Organic Particles and Bacteria in the Ocean

  • Peter J. Wangersky
Part of the NATO Conference Series book series (NATOCS, volume 15)


The bacterial decomposition of particulate matter has always been considered one of the major pathways in the recycling of nutrients in the oceans. It is only recently, however, that any attempt has been made to partition nutrient regeneration between the various trophic levels. The purpose of this review is to examine the suitability of naturally occurring organic particles as substrates for bacterial growth and as sites for nutrient regeneration. Because of the dual meaning of the word, substrate will be used only to refer to the substances used for microbial growth.


Particulate Organic Matter Particulate Organic Carbon Dissolve Organic Matter Fecal Pellet Sediment Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Aizatulin, T. A., and K. M. Khailov. 1972. Kinetics of the transformation of proteins and polysaccharides dissolved in the sea water through the interaction with detritus. Okeanologia 12: 809–816.Google Scholar
  2. Alldredge, A. L. 1972. Abandoned larvacean houses: a unique food source in the pelagic environment. Science 177: 885–887.ADSGoogle Scholar
  3. Alldredge, A. L. 1976. Discarded appendicularian houses as sources of food, surface habitats, and particulate organic matter in planktonic environments. Limnol. Oceanogr. 21: 14–23.Google Scholar
  4. Alldredge, A. L. 1979. The chemical composition of macroscopic aggregates in two neritic seas. Limnol. Oceanogr. 24: 855–866.Google Scholar
  5. Artemiev, V. E. 1973. Carbohydrates in the suspended matter of the Pacific Ocean. Okeanologia 13: 809–813.Google Scholar
  6. Artemiev, V. E. 1974. Comparative characteristics of the composition of carbohydrates of phytoplankton, suspended matter and bottom sediments of the ocean. Okeanologia 14: 1012–1016.Google Scholar
  7. Atlas, R. M., and R. Bartha. 1972. Biodegradation of petroleum in seawater at low temperature. Can. J. Microbiol. 18: 1851–1855.Google Scholar
  8. Atlas, R. M., E. A. Schofield, F. A. Morelli, and R. E. Cameron. 1976. Effects of petroleum pollutants on Arctic microbial populations. Environ. Pollut. 10: 35–43.Google Scholar
  9. Azam, F., and R. E. Hodson. 1977. Size distribution and activity of marine microheterotrophs. Limnol. Oceanogr. 22: 492–501.Google Scholar
  10. Barber, R. T. 1966. Interaction of bubbles and bacteria in the formation of organic aggregates in seawater. Nature (London) 211: 257–258.ADSGoogle Scholar
  11. Barcelona, M. J., and D. K. Atwood. 1979. Gypsum-organic interactions in the marine environment: sorption of fatty acids and hydrocarbons. Geochim. Cosmochim. Acta 43: 47–53.ADSGoogle Scholar
  12. Barham, E. G. 1979. Giant larvacean houses: observations from deep submersibles. Science 205: 1129–1131.ADSGoogle Scholar
  13. Baylor, E. R., M. B. Baylor, D. C. Blanchard, L. D. Syzdek, and C. Appel. 1977. Virus transfer from surf to wind. Science 198: 575–580.ADSGoogle Scholar
  14. Bezdek, H. F, and A. F. Carlucci. 1972. Surface concentration of marine bacteria. Limnol. Oceanogr. 17: 566–569.Google Scholar
  15. Biggs, R. B., and D. A. Flemer. 1972. The flux of particulate carbon in an estuary. Mar. Biol. 12: 11–17.Google Scholar
  16. Bishop, J. K. B., and J. M. Edmond. 1976. A new large volume filtration system for the sampling of oceanic particulate matter. J. Mar. Res. 34: 181–198.Google Scholar
  17. Bitton, G., B. N. Feldberg and S. R. Farrah. 1979. Concentration of enteroviruses from seawater and tapwater by organic floccu- lation using non-fat dry milk and casein. Water Air Soil Pollut. 12: 187–195.Google Scholar
  18. Bitton, G., and R. Mitchell. 1974. Effect of colloids on the survival of bacteriophages in seawater. Water Res. 8: 227–229.Google Scholar
  19. Blakemore, R. P., and A. E. Carey. 1978. Effects of polychlorinated biphenyls on growth and respiration of heterotrophic marine bacteria. Appl. Environ. Microbiol. 35: 323–328.Google Scholar
  20. Blanchard, D. 1978. Jet drop enrichment of bacteria, virus, and dissolved organic material. Pure Appl. Geophys. 116: 302–308.ADSGoogle Scholar
  21. Blanchard, D., and L. Syzdek. 1970. Mechanism for the water-to-air transfer and concentration of bacteria. Science 170: 626–628.ADSGoogle Scholar
  22. Blanchard, D., and L. D. Syzdek. 1972. Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77: 5087–5099.ADSGoogle Scholar
  23. Blanchard, D., and L. D. Syzdek. 1974. Importance of bubble scavenging in the water-to-air transfer of organic matter and bacteria. J. Rech. Atmos. 13: 529–540.Google Scholar
  24. Bobbie, R. J., S. J. Morrison, and D. C. White. 1978. Effects of substrate biodegradability on the mass and activity of the associated estuarine microbiota. Appl. Environ. Microbiol. 35: 179–184.Google Scholar
  25. Cauwet, G. 1978. Organic chemistry of sea water particulates: concepts and developments. Oceanol. Acta 1: 99–105.Google Scholar
  26. Conover, R. J. 1975. Transformation of organic matter, pp. 221–499. O. Kinne [ed.]. Marine Ecology, Vol. IV, Dynamics. John Wiley and Sons, New York.Google Scholar
  27. Costin, J. M. 1970. Visual observations of suspended-particle distribution at three sites in the Caribbean Sea. J. Geophys. Res. 75: 4144–4150.ADSGoogle Scholar
  28. Daumas, R. A. 1976. Variations of particulate proteins and dissolved amino acids in coastal seawater. Mar. Chem. 4: 225–242.Google Scholar
  29. Delany, A. C., A. C. Delany, D. W. Parkin, J. J. Griffin, E. D. Goldberg, and B. E. F. Reimann. 1967. Airborne dust collected at Barbados. Geochim. Cosmochim. Acta 31: 885–909.ADSGoogle Scholar
  30. DePinto, J. V., and F. H. Verhoff. 1977. Nutrient regeneration from aerobic decomposition of green algae. Environ. Sci. Technol. 11: 371–377.Google Scholar
  31. de Souza Lima, H., and P. J. Le, B. Williams. 1978. Oxygen consumption by the planktonic population of an estuary - Southampton Water. Estuarine Coastal Mar. Sci. 6: 515–521.Google Scholar
  32. Deuser, W. G., E. H. Ross, and R. F. Anderson. 1981. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. Deep-Sea Res. 28: 495–505.Google Scholar
  33. Dixon, J. K., and M. W. Zielyk. 1969. Control of the bacterial Sci. Technol. 3: 551–558.Google Scholar
  34. Duce, R. A., C. K. Unni, B. J. Ray, J. M. Propero, and J. T. Merrill. 1980. Long-range atmospheric tranpsort of soil dust from Asia to the tropical North Pacific: Temporal variability. Science 209: 1522–1524.ADSGoogle Scholar
  35. Duinker, J. C., and M. T. J. Hillebrand. 1979. Behaviour of PCB, pentachlorobenzene, hexachlorobenzene, a-HCH, Y-HCH, 3-HCH, Dieldrin, endrin and p,p*-DDD in the Rine-Meuse estuary and the adjacent coastal area. Neth. J. Sea Res. 13: 256–282.Google Scholar
  36. Eadie, B. J., and L. M. Jeffrey. 1973. Ö13-C analyses of oceanic particulate organic matter. Mar. Chem. 1: 199–209.Google Scholar
  37. Eadie, B. J., L. M. Jeffrey and W. M. Sackett. 1978. Some observations on the stable carbon isotope composition of dissolved and particulate organic carbon in the marine environment. Geochim. Cosmochim. Acta 42: 1265–1269.ADSGoogle Scholar
  38. Eggiman, D. W., P. R. Betzer and K. L. Carder. 1980. Particle transport from the West African shelves of Liberia and Sierra Leone to the deep sea: a chemical approach. Mar. Chem. 9: 283–306.Google Scholar
  39. Ehrhardt, M., C. Osterroht, and G. Petrick. 1980. Fatty-acid methyl esters dissolved in seawater and associated with suspended particulate matter. Mar. Chem. 10: 67–76.Google Scholar
  40. Eisenreich, S. J., A. W. Elzerman, and D. E. Armstrong. 1978. Enrichment of micronutrients, heavy metals, and chlorinated hydrocarbons in wind-generated lake foam. Environ. Sci. Technol. 12: 413–417.Google Scholar
  41. Elzerman, A. W., and D. E. Armstrong. 1979. Enrichment of Zn, Cd, Pb, and Cu in the surface microlayer of Lakes Michigan, Ontario, and Mendota. Limnol. Oceanogr. 24: 133–144.Google Scholar
  42. Faust, M. A., and D. L. Correll. 1977. Autoradiographic study to detect metabolically active phytoplankton and bacteria in the Rhode River estuary. Mar. Biol. 41: 293–303.Google Scholar
  43. Fellows, D. A., D. M. Karl, and G. A. Knauer. 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-Sea Res. 28: 921–936.Google Scholar
  44. Fletcher, M., and G. I. Loeb. 1979. Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Appl. Environ. Microbiol. 37: 67–72.Google Scholar
  45. Fowler, S. W., and L. F. Small. 1972. Sinking rates of euphausiid fecal pellets. Limnol. Oceanogr. 17: 293–296.Google Scholar
  46. Friedman, B.A., P. R. Dugan, R. M. Pfister, and C. C. Remsen. 1969. Structure of exocellular polymers and their relationship to bacterial flocculation. J. Bacteriol. 98: 1328–1334.Google Scholar
  47. Fujisawa, H., M. Murakami, and T. Manabe. 1977. Ecological studies on hydrocarbon-oxidizing bacteria in Japanese coastal waters. I. Some methods of enumeration of hydrocarbon-oxidizing bacteria. Bull. Jpn. Soc. Sci. Fish. 43: 659–668.Google Scholar
  48. Gearing, P. J., J. N. Gearing, R. J. Pruell, T. L. Wade, and J. G. Quinn. 1980. Partitioning of No. 2 fuel oil in controlled estuarine ecosystems. Sediments and suspended particulate matter. Environ. Sci. Technol. 14: 1129–1136.Google Scholar
  49. Gerba, C. P., and G. E. Schaiberger. 1975. Aggregation as a factor in loss of viral titer in seawater. Water Res. 9: 567–571.Google Scholar
  50. Gilmer, R. W. 1972. Free-floating mucus webs: a novel feeding adaptation for the open ocean. Science 176: 1239–1240.ADSGoogle Scholar
  51. Goetz, A. 1965. Parameters for biocolloidal matter in the atmosphere, pp. 79–97. Proc. Atmos. Biol. Conf.Google Scholar
  52. Gordon, D. C., Jr. 1977. Variability of particulate organic carbon and nitrogen along the Halifax-Bermuda section. Deep-Sea Res. 24: 257–270.Google Scholar
  53. Gordon, D. C., Jr., P. J. Wangersky and R. W. Sheldon. 1979. Detailed observations on the distribution and composition of particulate organic material at two stations in the Sargasso Sea. Deep-Sea Res. 26: 1083–1092.Google Scholar
  54. Goulder, R. 1977. Attached and free bacteria in an estuary with abundant suspended solids. J. Appl. Bacteriol. 43: 399–405.Google Scholar
  55. Gundersen, K., C. W. Mountain, D. Taylor, R. Ohye and J. Shen. 1972. Some chemical and microbiological observations in the Pacific Ocean off the Hawaiian Islands. Limnol. Oceanogr. 17: 524–531.Google Scholar
  56. Handa, N. 1970. Organic components of particulate matter in sea water in the Kuroshio and Oyashio areas. Proc. 2 CSK Symp., Tokyo 1970: 207–211.Google Scholar
  57. Hanson, R. B. 1977. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29: 107–118.Google Scholar
  58. Hanson, R. B., and W. J. Wiebe. 1977. Heterotrophic activity associated with particulate size fractions in a Spartina alterniflora salt-marsh estuary, Sapelo Island, Georgia, U.S.A., and the continental shelf waters. Mar. Biol. 42: 321–330.Google Scholar
  59. Harrison, W. G. 1978. Experimental measurements of nitrogen remin- eralization in coastal waters. Limnol. Oceanogr. 23: 684–694.Google Scholar
  60. Harvey, R. W., and L. Y. Young. 1980. Enrichment and association of bacteria and particulates in salt marsh surface water. Appl. Environ. Microbiol. 39: 894–899.Google Scholar
  61. Hendrikson, P. 1976. Abbauraten von organischem Kohlenstoff im Seston und in Sinkstoffen der Kieler Bucht. Kiel. Meeresforsch. 3: 103–119.Google Scholar
  62. Herbies, S. E. 1977. Partitioning of polycyclic aromatic hydrocarbons between dissolved and particulate phases in natural waters. Water Res. 11: 493–496.Google Scholar
  63. Hobbie, J. E., R. J. Daley, and S. Jasper. 1977. Use of Nuclepore filters for counting bcteria by fluorescence microscopy. Appl. Environ. Microbiol. 33: 1225–1228.Google Scholar
  64. Hobbie, J. E. 1979. Activity and bacterial biomass. Arch. Hydrobiol. Beih. Ergebn. Limnol. 12: 59–63.Google Scholar
  65. Hollibaugh, J. T. 1976. The biological degradation of arginine and glutamic acid in seawater in relation to the growth of phyto-plankton. Mar. Biol. 36: 303–312.Google Scholar
  66. Honjo, S., K. Doherty, Y. Agrawal, and V. Asper. 1983. Direct optical assessment of large amorphous aggregates in the deep ocean. Deep-Sea Res. In press.Google Scholar
  67. Honjo, S., and M. R. Roman. 1978. Marine copepod fecal pellets production, preservation and sedimentation. J. Mar. Res. 36: 45–57.Google Scholar
  68. Hoppe, H.-G. 1978. Relations between active bacteria and heterotrophic potential in the sea. Neth. J. Sea Res. 12: 78–98.ADSGoogle Scholar
  69. Hughes, D. E., and P. McKenzie. 1975. The mirobial degradation of oil in the sea. Proc. R. Soc. Lond. (B) 189: 375–390.ADSGoogle Scholar
  70. Hunter, K. A., and P. S. Liss. 1979. The surface charge of suspended particles in estuarine and coastal waters. Nature (London) 282: 823–825.ADSGoogle Scholar
  71. Iseki, K. 1981. Particulate organic matter tranpsort to the depp sea by salp fecal pellets. Mar. Ecol. Prog. Ser. 5: 55–60.Google Scholar
  72. Ishida, Y., A. Uchida, and H. Kadota. 1977. Ecological studies on bacteria in the sea and lake waters polluted with organic substances. IV. Determination of bacterial degradable organic matter in aquatic environments. Bull. Jpn. Soc. Sci. Fish. 43: 885–892.Google Scholar
  73. Iturriaga, R. 1979. Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55: 157–169.Google Scholar
  74. Johannes, R. E., and M. Satomi. 1966. Composition and nutritive value of fecal pellets of a marine crustacean. Limnol. Oceanogr. 11: 191–197.Google Scholar
  75. Johnson, B. D. 1976. Nonliving organic particle formation from bubble dissolution. Limnol. Oceanogr. 21: 444–446.Google Scholar
  76. Johnson, B. D., and R. C. Cooke. 1980. Organic particle and aggregate formation resulting from the dissolution of bubbles in seawater. Limnol. Oceanogr. 25: 653–661.Google Scholar
  77. Kajihara, M., and M. Matsuoka. 1978. Settling of oil particles adsorbed on suspended matter. Bull. Fac. Fish. Hokkaido Univ. 29: 259–269.Google Scholar
  78. Kholdebarin, B., and J. J. Oertli. 1977. Effect of suspended particles and their sizes in the nitrification in surface water. J. Water Pollut. Control Fed. 49: 1693–1697.Google Scholar
  79. Kofoed, L. H. 1975a. The feeding biology of Hydrobia ventrosa (Montagu). I. The assimilation of different components of the food. J. Exp. Mar. Biol. Ecol. 19: 233–241.Google Scholar
  80. Kofoed, L. H. 1975b. The feeding biology of Hydrobia ventrosa (Montagu). II. Allocation of the components of the carbon-budget and the significance of the secretion of dissolved organic matter. J. Exp. Mar. Biol. Ecol. 19: 243–256.Google Scholar
  81. Kranck, K. 1975. Sediment deposition from flocculated suspensions. Sedimentology 22: 111–123.ADSGoogle Scholar
  82. Kranck, K. 1979. Dynamics and distribution of suspended particulate matter in the St. Lawrence estuary. Nat. Can. 106: 163–173.Google Scholar
  83. Kranck, K., and T. Millligan. 1980. Macroflocs: production of marine snow in the laboratory. Mar. Ecol. Prog. Ser. 3: 19–24.Google Scholar
  84. Kuenen, P. H. 1950. Marine Geology. John Wiley & Sons, Inc., New York.Google Scholar
  85. Larson, R. A., T. L. Bott, L. L. Hunt, and K. Rogenmuser. 1979. Photooxidation products of a fuel oil and their antimicrobial activity. Environ. Sci. Technol. 13: 965–969.Google Scholar
  86. Lasker, R. 1964. Moulting frequency of a deep-sea crustacean Euphausia pacifica. Nature (London) 203: 96.ADSGoogle Scholar
  87. Maita, Y., and M. Yanada. 1978. Particulate protein in coastal waters, with special reference to seasonal variation. Mar. Biol. 44: 329–336.Google Scholar
  88. Marshall, K. C., R. Stout, and R. Mitchell. 1971. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J. Gen. Microbiol. 68: 337–348.Google Scholar
  89. Martin, A. G., C. Raiux, and J. R. Graull. 1977. Distribution de la matiére organique particulaire dans I’estuairie de la Penzé (Nord-Finistere). J. Rech. Oceanogr. 2: 13–19.Google Scholar
  90. Matsuda, O., T. Endo and H. Koyama. 1975. On the balance and seasonal variation of dissolved and particulate phosphorus in an eutrophicated coastal environment. J. Fac. Fish. Anim. Husb. Hiroshima Univ. 14: 217–240.Google Scholar
  91. Melnikov, I. A. 1975. Microplankton and organic detritus in the water of the south-east Pacific. Okeanologia 15: 146–157.Google Scholar
  92. Melnikov, J. A., and B. V. Volostnykh. 1974. Some data about the destruction of organic matter and the regeneration of the mineral forms of phosphorus and nitrogen in the Antarctic waters of the Atlantic Ocean. Tr. Inst. Okeanol. Akad. Nauk SSSR 98: 261–269.Google Scholar
  93. Menzel, D. W. 1966. Bubbling of sea water and the production of organic particles: a re-evaluation. Deep-Sea Res. 13: 963–966.Google Scholar
  94. Menzel, D. W. 1970. The role of in situ decomposition of organic matter on the concentration of non-conservative properties in the sea. Deep-Sea Res. 17: 751–764.Google Scholar
  95. Menzel, D. W., and J. H. Ryther. 1968. Organic carbon and the oxygen minimum in the South Atlantic Ocean. Deep-Sea Res. 15: 327–337.Google Scholar
  96. Menzel, D. W., and J. H. Ryther. 1970. Distribution and cycling of organic matter in the ocean, pp. 31–54. In: D. W. Hood [ed.].Symposium on Organic Matter in Natural Waters. Inst. Marine Sci. Occas. Publ. 1.Google Scholar
  97. Meyers, P. A., and J. G. Quinn. 1971a. Interaction between fatty acids and calcite in sea water. Limnol. Oceanogr. 16: 992–997.Google Scholar
  98. Meyers, P. A., and J. G. Quinn. 1971b. Fatty acid-clay mineral association in artificial and natural sea water solutions. Geochim. Cosmochim. Acta 35: 628–632.ADSGoogle Scholar
  99. Meyers, P. A., and J. G. Quinn. 1973. Factors affecting the association of fatty acids with mineral particles in sea water. Geochim. Cosmochim. Acta 37: 1745–1759.ADSGoogle Scholar
  100. Miller, G. C., and R. G. Zepp. 1979. Photoreactivity of aquatic pollutants sorbed on suspended sediments. Environ. Sci. Technol. 13: 860–863.Google Scholar
  101. Mitchell, R.,and H. W. Jannasch. 1969. Processes controlling virus inactivation in seawater. Environ. Sci. Technol. 3: 941–943.Google Scholar
  102. Miyoshi, H. 1976. Decomposition of marine plankton under laboratory conditions. Bull. Jpn. Soc. Sci. Fish. 42: 1205–1211.Google Scholar
  103. Morris, R. J., and S. E. Calvert. 1975. Fatty acid uptake by marine sediment particles. Geochim. Cosmochim. Acta 39: 377–381.ADSGoogle Scholar
  104. Mukerjee, P., and J. R. Cardinal. 1978. Benzene derivatives and naphthalene solubilized in micelles. Polarity of microenviron- ment, location and distribution in micelles, and correlation with surface activity in hydrocarbon-water systems. J. Phys. Chem. 82: 1620–1627.Google Scholar
  105. Neihof, R., and G. Loeb. 1972. The surface charge of particulate matter in seawater. Limnol. Oceanogr. 17: 7–16.Google Scholar
  106. Nishizawa, S., and S. Tsunogai. 1974. Dynamics of particulate material in the ocean. I. Production and decomposition of particulate organic carbon in the northern North Pacific Ocean and Bering Sea, pp. 173–174. In D. W. Hood and E. J. Kelly [eds.], Oceanography of the Bering Sea. Occas. Publ. Inst. Mar. Sci. Univ. Alaska 2.Google Scholar
  107. Ogawa, K. 1977a. Primary participation of fecal bacteria in the formation of suspended organic matter in the sea. I. Ion adsorption and floe formation by Escherichia coli. Bull. Jpn. Soc. Sci. Fish. 43: 1081–1088.Google Scholar
  108. Ogawa, K. 1977b. Primary participation of fecal bacteria in the formation of suspended organic matter in the sea. II. Floe formation by fecal bacteria isolated from marine animals. Bull. Jpn. Soc. Sci. Fish. 43: 1089–1096.Google Scholar
  109. Oloffs, P. C., L. J. Albright, S. Y. Szeto, and J. Lau. 1973. Factors affecting the behavior of five chlorinated hydrocarbons in two natural waters and their sediments. J. Fish. Res. Board Can. 30: 1619–1623.Google Scholar
  110. Osterroht, C., and V. Smetaeek. 1980. Vertical transport of chlorinated hydrocarbons by sedimentation of particulate matter in Kiel Bight. Mar. Ecol. Prog. Ser. 2: 27–34.Google Scholar
  111. Paerl, H. W. 1973. Detritus in Lake Tahoe: structural modification by attached microflora. Science 180: 496–498.ADSGoogle Scholar
  112. Paerl, H. W. 1974. Bacterial uptake of dissolved organic matter in relation to detrital aggregation in marine freshwater systems. Limnol. Oceanogr. 19: 966–972.Google Scholar
  113. Paerl, H. W. 1977. Bacterial sediment formation in lakes: trophic implications, pp. 40–47. In: H. L. Golterman [ed.]. Interactions Between Sediments and Fresh Water. Dr. W. Junk B. V., The Hague.Google Scholar
  114. Pak, H., L. A. Codispotti, and J. R. V. Zaneveld. 1980a. On the intermediate particle maxima associated with oxygen-poor water off western South America. Deep-Sea Res. 27: 783–797.Google Scholar
  115. Pak, H., J. R. V. Zaneveld, and J. Kitchen. 1980b. Intermediate nepheloid layers observed off Oregon and Washington. J. Geophys. Res. 85: 6697–6708.ADSGoogle Scholar
  116. Pfister, R. M., P. R. Dugan, and J. I. Frea. 1969. Micropartlculates: Isolation from water and identification of associated chlorinated pesticides. Science 166: 878–879.ADSGoogle Scholar
  117. Pierce, J. W., and F. R. Siegel. 1979. Particulate material suspended in estuarine and oceanic waters. Scanning Electron Microsc. 1979: 555–562.Google Scholar
  118. Pocklington, R., and J. D. Leonard. 1979. Terrigenous organic matter in sediments of the St. Lawrence Estuary and the Saguenay Fjord. J. Fish. Res. Board Can. 36: 1250–1255.Google Scholar
  119. Pomeroy, L. R., and D. Deibel. 1980. Aggregation of organic matter by pelagic tunicates. Limnol. Oceanogr. 25: 643–652.Google Scholar
  120. Prahl, F. G., J. T. Bennett, and R. Carpenter. 1980. The early diagenesis of aliphatic hydrocarbons and organic matter in sedimentary particulates from Dabob Bay, Washington. Geochim. Cosmochim. Acta 44: 1967–1976.ADSGoogle Scholar
  121. Rajagopal, M. D. 1974. On assimilation and regeneration of phosphorus in two different environments. Mahasagar 7: 143–149.MathSciNetGoogle Scholar
  122. Riley, G. A. 1970. Particulate organic matter in sea water. Adv. Mar. Biol. 8: 1–118.Google Scholar
  123. Riley, G. A., P. J. Wangersky, and D. Van Hemert. 1964. Organic aggregates in tropical and subtropical surface waters of the North Atlantic Ocean. Limnol. Oceanogr. 9: 546–550.Google Scholar
  124. Rohatgi, N., and K. Y. Chen. 1975. Transport of trace metals by suspended particulates on mixing with seawater. J. Water Pollut. Control Fed. 47: 2298–2316.Google Scholar
  125. Rowe, G. T., and N. Staresinic. 1977/1979. Sources of organic matter to the deep-sea benthos. Ambio Spec. Rept. 6: 19–23.Google Scholar
  126. Ruppersberg, G. H., and R. Schellhase. 1980. Warum reagiert das Aerosol über dem Atlantik so abnorm auf Änderungen der relativen Feuchte? Annin. Met. 15: 245–246.Google Scholar
  127. Sakamoto, W. 1972. Study on the process of river suspension from flocculation to accumulation in estuary. Bull. Ocean Res. Inst. Univ. Tokyo 5: 1–46.Google Scholar
  128. Satoh, Y., and T. Hanya. 1976. Decomposition of urea by the larger particulate fraction and the free bacteria fraction in a pond water. Int. Revue ges. Hydrobiol. 61: 799–806.Google Scholar
  129. Seki, H. 1965. Microbiological studies on the decomposition of chitin in the marine environment - IX. Rough estimation on chitin decomposition in the ocean, J. Oceanogr. Soc. Jpn. 21: 17–24.Google Scholar
  130. Seki, H. 1970. Microbial biomass in the euphotic zone of the North Pacific subarctic water. Pac. Sci. 24: 269–274.Google Scholar
  131. Seki, H, 1971. Microbial clumps in seawater in the euphotic zone of Saanich Inlet (British Columbia). Mar. Biol. 9: 4–8.Google Scholar
  132. Seki, H, H. Abe, Y. Yamaguchi, and S.-E. Ichimura. 1974. Bacteria on petroleum globules in the Philippine Sea in January, 1973. J. Oceanogr. Soc. Jpn. 30: 151–156.Google Scholar
  133. Shanks, A. L., and J. D. Trent. 1979. Marine snow: Microscale nutrient patches. Limnol. Oceanogr. 24: 850–854.Google Scholar
  134. Shanks, A. L., and J. D. Trent. 1980. Marine snow: sinking rates and potential role in vertical flux. Deep-Sea Res. 27: 137–143.Google Scholar
  135. Sheldon, R. W., P. T. Evelyn, and T. R. Parsons. 1967. On the occurrence and formation of small particles in seawater. Limnol. Oceanogr. 12: 367–375.Google Scholar
  136. Sholkovitz, E. R. 1976. Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater. Geochim. Cosmochim. Acta 40: 831–845.ADSGoogle Scholar
  137. Sholkovitz, E. R. 1978. The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing. Earth Planet. Sci. Letts. 41: 77–86.ADSGoogle Scholar
  138. Sholkovitz, E. R., E. A. Boyle, and N. B. Price. 1978. The removal of dissolved humic acids and iron during estuarine mixing. Earth Planet. Sci. Letts. 40: 130–136.ADSGoogle Scholar
  139. Sholkovitz, E. R., and D. Copeland. 1981. The coagulation, solubility and adsorption properties of Fe, Mn, Cu, Ni, Cd, Co, and humic acids in a river water. Geochim. Cosmochim. Acta 45: 181–189.ADSGoogle Scholar
  140. Sholkovitz, E. R., and N. B. Price. 1980. The major-element chemistry of suspended matter in the Amazon estuary. Geochim. Cosmochim. Acta 44: 163–171.ADSGoogle Scholar
  141. Sibert, J., and T. J. Brown. 1975. Characteristics and potential significance of heterotrophic activity in a polluted fjord estuary. J. Exp. Mar. Biol. Ecol. 19: 97–104.Google Scholar
  142. Sieburth, J. McN. 1967. Observations on bacteria planktonic in Narragansett Bay, Rhode Island; a resume. Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12: 49–64.Google Scholar
  143. Silver, M. W., A. L. Shanks, and J. D. Trent. 1978. Marine snow: microplankton habitat and source of small-scale patchiness in pelagic populations. Science 201: 331–373.Google Scholar
  144. Silverberg, N., and B. Sundby. 1979. Observations in the turbidity maximum of the St. Lawrence Estuary. Can. J. Earth Sci. 16: 939–950.ADSGoogle Scholar
  145. Skopintsev, B. A. 1973/76. Mineralization regularities of the organic matter of dead phytoplankton. Ambio Spec. Rept. 4: 45–54.Google Scholar
  146. Small, L. F., S. W. Fowler, and M. Y. Unlu. 1979. Sinking rates of natural copepod fecal pellets. Mar. Biol. 51: 233–241.Google Scholar
  147. Smetacek, V., and P. Hendrikson. 1979. Composition of particulate organic matter in Kiel Bight in relation to phytoplankton successison. Oceanol. Acta 2: 287–298.Google Scholar
  148. Stahl, W. J. 1980. Compositional changes and 13C/12C fractionations during the degradation of hydrocarbons by bacteria. Geochim. Cosmochim. Acta 44: 1903–1907.ADSGoogle Scholar
  149. Stanley, D. W., and J. E. Robbie. 1981. Nitrogen recycling in a North Carolina coastal river. Limnol. Oceanogr. 26: 30–42.Google Scholar
  150. Tan, F. C., and P. M. Strain. 1979. Organic carbon isotope ratios in recent sediments in the St. Lawrence Estuary and the Gulf of St. Lawrence. Estuarine Coastal Mar. Sci. 8: 213–225.Google Scholar
  151. Tanoue, E., and N. Handa. 1979. Differential sorption of organic matter by various sized sediment particles in recent sediment from the Bering Sea. J. Oceanogr. Soc. Jpn. 35: 199–208.Google Scholar
  152. Trent, J. D., A. L. Shanks, and M. W. Silver. 1978. In situ and laboratory measurments on macroscopic aggregates in Monterey Bay, California. Limnol. Oceanogr. 23: 626–635.Google Scholar
  153. Wakeham, S. G., J. W. Farrington, R. B. Gagosian, C. Lee, H. DeBaar, G. E. Nigrelli, B. W. Tripp, S. O. Smith, and N. M. Frew. 1980. Organic matter fluxes from sediment traps in the equatorial Atlantic Ocean. Nature (London) 286: 798–800.ADSGoogle Scholar
  154. Walker, J. D., J. J. Calomiris, T. L. Herbert, and R. R. Colwell. 1976a. Petroleum hydrocarbons: degradation and growth potential for Atlantic Ocean sediment bacteria. Mar. Biol. 34: 1–9.Google Scholar
  155. Walker, J. D., and R. R. Colwell. 1976. Measuring the potential activity of hydrocarbon-degrading bacteria. Appl. Environ. Microbiol. 31: 189–197.Google Scholar
  156. Walker, J. D., and R. R. Colwell. 1977. Sampling device for monitoring biodegradation of oil and other pollutants in aquatic environments. Environ. Sci. Technol. 11: 93–95.Google Scholar
  157. Walker, J. D., P. A. Seesman, T. L. Herbert, and R. R. Colwell. 1976. Petroleum hydrocarbons: degradation and growth potential of deep-sea sediment bacteria. Environ. Pollut. 10: 89–99.Google Scholar
  158. Wangersky, P. J. 1974. Particulate organic carbon: sampling variability. Limnol. Oceanogr. 19: 980–984.Google Scholar
  159. Wangersky, P. J. 1976a. The surface film as a physical environment. Ann. Rev. Ecol. Syst. 7: 161–176.Google Scholar
  160. Wangersky, P. J. 1976b. Particulate organic carbon in the Atlantic and Pacific oceans. Deep-Sea Res. 23: 457–465.Google Scholar
  161. Wangersky, P. J. 1977. The role of particulate matter in the productivity of surface waters. Helgol. Wiss. Meeresunters. 30: 546–564.Google Scholar
  162. Wangersky, P. J. 1978a. Production of dissolved organic matter, pp. 115–220. In: O. Kinne [ed.], Marine Ecology, Vol. IV, Dynamics. John Wiley and Sons, New York.Google Scholar
  163. Wangersky, P. J. 1978b. The distribution of particulate organic carbon in the oceans: ecological implications. Int. Revue ges. Hydrobiol. 63: 567–574.Google Scholar
  164. Wangersky, P. J., and A. V. Hincks. 1980. Shipboard intercalibration of filters used in the measurement of particulate organic carbon, pp. 53–62. In: J. Albaiges [ed.], Analytical Techniques in Environmental Chemistry. Pergamon Press, New York.Google Scholar
  165. Wangersky, P. J., and O. I. Joensuu. 1967. The fractionation of carbonate deep-sea cores. J. Geol. 75: 148–177.ADSGoogle Scholar
  166. Yamada, H., A. Murakami, and M. Kayama. 1979. Mineralization of organic substances in seawater. Bull. Jpn. Soc. Sci. Fish. 45: 1299–1305.Google Scholar
  167. Yamamoto, S. 1979. Size distribution of detrital mineral grains suspended in surface waters of the Yellow Sea and East China Sea. J. Oceanogr. Soc. Jpn. 35: 91–99.Google Scholar
  168. Yanada, M., and Y. Malta. 1978. Production and decomposition of particulate organic matter in Funka Bay, Japan. Estuarine Coastal Mar. Sci. 6: 523–533.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Peter J. Wangersky
    • 1
  1. 1.Department of OceanographyDalhousie UniversityHalifaxCanada

Personalised recommendations