Bacterial Growth in Relation to Phytoplankton Primary Production and Extracellular Release of Organic Carbon

  • Bo Riemann
  • Morten Søndergaard
Part of the NATO Conference Series book series (NATOCS, volume 15)


Carbon flow in pelagic waters is dominated by phytoplankton photosynthesis and the subsequent transport and decomposition by heterotrophic organisms of the produced organic matter. Present understanding of the interactions between autotrophic and heterotrophic organisms suffers from limited knowledge of the secondary production. One major problem is the part played by bacteria in returning dissolved organic carbon to organic particles which can be utilized by higher trophic levels (Pomeroy 1974). In this context it is especially important to elucidate the dynamic relationship between phytoplankton, bacteria and zooplankton and the extent to which such interactions are controlled by extracellular organic carbon released by the phytoplankton.


Bacterial Production Thymidine Incorporation Sulfate Uptake Diatom Bloom Extracellular Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell, W. H., and R. Mitchell. 1972. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143: 265–276.CrossRefGoogle Scholar
  2. Bell, W. H., and E. Sakshaug. 1980. Bacterial utilization of algal extracellular products. 2. A kinetic study of natural populations. Limnol. Oceanogr. 25: 1021–1033.CrossRefGoogle Scholar
  3. Berman, T. 1975. Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake. Mar. Biol. 33: 215–220.CrossRefGoogle Scholar
  4. Berman, T., and C. Gerber. 1980. Differential filtration studies of carbon flux from living algae to microheterotrophs, microplankton size distribution and respiration in Lake Kinneret. Microb. Ecol. 6: 189–198.CrossRefGoogle Scholar
  5. Cahet, G., and Y. Martin. 1979. Production primaire et activité bactérienne en eutrophisation expérimentale (lagune du Brüse. Automne 1977). Publ. Sci. Tech. CNEXO. Actes Collq. 7: 351–366.Google Scholar
  6. Chrost, R. J. 1981. The composition and bacterial utilization of DOC released by phytoplankton. Kiel. Meeresforsch. Sonderh. 5: 325–332.Google Scholar
  7. Coveney, M. F. 1982. Bacterial uptake of photosynthetic carbon from freshwater phytoplankton. Oikos 38: 8–20.CrossRefGoogle Scholar
  8. Cuhel, R. L., C. D. Taylor, and H. W. Jannasch. 1982. Assimilatory sulfur metabolism in marine microorganisms: sulfur metabolism, protein synthesis, and growth of Alteromonas luteo-violaceus and Pseudomonas halodurans during perturbed batch growth. Appl. Environ. Microbiol. 43: 151–159.Google Scholar
  9. Derenbach, J. R., and P. J. leB. Williams. 1974. Autotrophic and bacterial production: fractionation of plankton populations by differential filtration of samples from the English Channel. Mar. Biol. 25: 263–269.CrossRefGoogle Scholar
  10. Fuhrman, J., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.Google Scholar
  11. Fuhrmann, J., and F. Azam. 1982. Thymidine incorporation as a easure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.CrossRefGoogle Scholar
  12. Hagström, Ä., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.Google Scholar
  13. Hellebust, J. A. 1974. Extracellular products, p. 838–863. W. D. P. Stewart [ed.]. Algal Physiology and Biochemistry. Blackwell Scientific Publ., Oxford.Google Scholar
  14. Herbland, A. 1975. Utilization par la flore hétérotrophe de la matiere organique naturelle dans I’eau de mer. J. Exp. Mar. Biol. Ecol. 19: 19–31.CrossRefGoogle Scholar
  15. Hobbie, J., and P. Rublee. 1977. Radioisotope studies of heterotrophic bacteria in aquatic ecosystems, pp. 441–476. In: J. Cairns Jr. [ed.], Aquatic Microbial Communities. Garland Publ., New York.Google Scholar
  16. Iturriaga, R. 1981. Phytoplankton photoassimilated extracellular products; heterotrophic utilization in marine environments. Kieler Meeresforsch. Sonderh. 5: 318–324.Google Scholar
  17. Iturriaga, R., and H.-G. Hoppe. 1977. Observations of heterotrophic activity on photoassimilated organic matter. Mar. Biol. 40: 101–108.CrossRefGoogle Scholar
  18. Jassby, A. D. 1973. The ecology of bacteria in the hypolimnion of Castle Lake, California. Ph.D. thesis. University of California, Davis.Google Scholar
  19. Jordan, M. J., and G. E. Likens. 1980. Measurments of planktonic bacterial production in an oligotrophic lake. Limnol. Oceanogr. 25: 719–732.CrossRefGoogle Scholar
  20. Jordan, M. J., and B. J. Peterson. 1978. Sulfate uptake as a measure of bacterial production. Limnol. Oceanogr. 23: 146–150.CrossRefGoogle Scholar
  21. Krambeck, C., H.-J. Krambeck, and J. Overbeck. 1981. Microcomputerassisted biomass determination of plankton bacteria on scanning electron micrographs. Appl. Environ. Microbiol. 42: 142–149.Google Scholar
  22. Larsson, U., and Å. Hagström. 1979. Phytoplankton exudate release as an energy source for the growth of pelagic bacteria. Mar. Biol. 52: 199–206.CrossRefGoogle Scholar
  23. Larsson, U., and A. Hagström. 1982. Fractionated phytoplankton primary production, exudate release, and bacterial production in a Baltic eutrophication gradient. Mar. Biol 67: 57–70.CrossRefGoogle Scholar
  24. Mague, T. H., E. Friberg, D. L. Hughes, and I. Morris. 1980. Extracellular release of carbon in marine phytoplankton; a physiological approach. Limnol. Oceanogr. 25: 262–279.CrossRefGoogle Scholar
  25. Martin, Y. P. 1980. Succession ecologique de communautés bactériennes au cours de 1’evolution d’un écosystème phytoplanctionique marin experimental. Oceanol. Acta 3: 293–300.Google Scholar
  26. Martin, Y. P., and M. A. Bianchi. 1980. Structure, diversity, and catabolic potentialities of aerobic heterotrophic bacterial populations associated with continuous cultures of natural marine phytoplankton. Microbiol. Ecol. 5: 265–279.CrossRefGoogle Scholar
  27. Monheimer, R. H. 1978. Difficulties in interpretation of microbial heterotrophy from sulfate uptake data: laboratory studies. Limnol. Oceanogr. 23: 150–154.CrossRefGoogle Scholar
  28. Moriarty, D. J. W. 1983. Measurement of bacterial growth rates in marine systems using nucleic acid precursors. In: J. E. Hobbie and P. J. leB. Williams [eds.], Heterotrohic Activity in the Sea. Plenum Press, New York.Google Scholar
  29. Moriarty, D. J. W., and P. C. Pollard. 1981. DNA synthesis as a measure of bacterial productivity in seagrass sediments. Mar. Ecol. Prog. Ser. 5: 151–156.CrossRefGoogle Scholar
  30. Nalewajko, C. 1977. Extracellular release in freshwater algae and bacteria: extracellular products of algae as a source of carbon for heterotrophs, pp. 589–624. In: J. Cairns Jr. [ed.]. Aquatic Microbial Communities. Garland Publ., New York.Google Scholar
  31. Nalewajko, C., T. G. Dunstall, and H. Shear. 1976. Kinetics of extracellular release in axenic algae and in mixed algalbacterial cultures: significance in estimation of total (gross) phytoplankton excretion rates. J. Phycol. 12: 1–5.Google Scholar
  32. Nalewajko, C., and D. W. Schindler. 1976. Primary production, extracellular release, and heterotrophy in two lakes in the ELA, Northwestern Ontario. J. Fish. Res. Board Can. 33: 219–226.CrossRefGoogle Scholar
  33. Newell, S. Y., and R. R. Christian. 1981. Frequency of dividing cells as an estimator of bacterial productivity. Appl. Environ. Microbiol. 42: 23–31.Google Scholar
  34. Overbeck, J. 1979. Dark CO2 uptake - biochemical background and its relevance to situ bacterial production. Arch. Hydrobiol. Beigh. Ergebn. Limnol. 12: 38–47.Google Scholar
  35. Pomeroy, L. R. 1974. The ocean’s food web, a changing paradigm. Bioscience 24: 499–504.CrossRefGoogle Scholar
  36. Riemann, B., J. Fuhrman, and F. Azam. 1982a. Bacterial secondary production in freshwater measured by %-thymidine method. Microb. Ecol. 8: 101–114.CrossRefGoogle Scholar
  37. Riemann, B., M. Sndergaard, H.-H. Schierup, S. Bosselmann, G. Christensen, J. B. Hansen, and B. Nielsen. 1982b. Carbon metabolism during a spring diatom bloom in the eutrophic Lake Mosses. Int. Rev. Ges. Hydrobiol. 67: 145–185.Google Scholar
  38. Sharp, J. H. 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it? Limnol. Oceanogr. 22: 381–399.MathSciNetGoogle Scholar
  39. Smith, W. O., Jr., R. T. Barber, and S. A. Huntsman. 1977. Primary production off the coast of northwest Africa: excretion of dissolved organic matter and its heterotrophic uptake. Deep-Sea Res. 24: 35–47.CrossRefGoogle Scholar
  40. Søndergaard, M., and H.-H. Schierup. 1982. Release of extracellular organic carbon during a diatom bloom in Lake Mossji: molecular weight fractionation. Freshwat. Biol. 12: 313–320.CrossRefGoogle Scholar
  41. Storch, T. A., and G. W. Saunders. 1975. Estimating daily rates of extracellular dissolved organic carbon released by phytoplankton populations. Ver. Int. Verein Limnol. 19: 952–958.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Bo Riemann
    • 1
  • Morten Søndergaard
    • 2
  1. 1.Freshwater Biological LaboratoryUniversity of CopenhagenHillerødDenmark
  2. 2.Botanical InstituteUniversity of AarhusRisskovDenmark

Personalised recommendations