Measurements of Bacterial Growth Rates in some Marine Systems Using the Incorporation of Tritiated Thymidine into DNA

  • D. J. W. Moriarty
Part of the NATO Conference Series book series (NATOCS, volume 15)


Heterotrophic microorganisms, especially bacteria, play an important part in decomposition processes, nutrient cycling and food chains in aquatic systems. In quantifying their role, measurement of the growth rate of the whole bacterial population is necessary, but has proved difficult. A number of different methods have been proposed for measuring microbial growth rates, but many are not specific for bacteria or do not include the whole population.


Thymidine Kinase Isotope Dilution Bacterial Productivity Tritiated Thymidine Nucleic Acid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azam, F. 1983. Growth of bacteria in the oceans. In: J. E. Hobbie and P. J. LeB. Williams [eds.]. Heterotrophic Activity in the Sea. Plenum Press, New York.Google Scholar
  2. Cooney, W. J., and S. G. Bradley. 1962. Action of cycloheximide on nimal cells, pp. 237–244. In: M. Finland and G. M. Savage [eds.]. Antimicrobial Agents and Chemotherapy - 1961. American Soc. Microbiol., Michigan.Google Scholar
  3. Edin, G., and P. Broda. 1968. Physiology and genetics of “ribonucleic acid control” locus in Escherichia coli. Bacteriol. Rev. 32: 206–226.Google Scholar
  4. Fink, R. M., and K. Fink. 1962. Relative retention of H3 and C14 labels of nucleosides incorporated into nucleic acids of Neurospora. J. Biol. Chem. 237: 2889–2891.Google Scholar
  5. Forsdyke, D. R. 1968. Studies of the incorporation of [5-%] uridine during activation and transformation of Ijmiphocytes induced by phytohemagglutinin. Biochem. J. 107: 197–205.Google Scholar
  6. Fuhrman, J. A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.Google Scholar
  7. Fuhrman, J. A., and F. Azam. 1982. Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation and field results. Mar. Biol. 66: 109–120.CrossRefGoogle Scholar
  8. Glaser, V. M., M. A. Al-Nui, V. V. Groshev, and S. V. Shestakov. 1973. The labelling of nucleic acids by radioactive precursors in the blue-green algae. Arch. Mikrobiol. 92: 217–226.CrossRefGoogle Scholar
  9. Grivell, A. R., and J. J. Jackson. 1968. Thymidine kinase: evidence for its absence from Neurospora crassa and some other microorganisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J. Gen. Microbiol. 54: 307–317.Google Scholar
  10. Hagström, Ä., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.Google Scholar
  11. Hollibaugh, J. T., J. A. Fuhrman, and F. Azam. 1980. Radioactively labeling of natural assemblages of bacterioplankton for use in trophic studies. Limnol. Oceanogr. 25: 172–181.CrossRefGoogle Scholar
  12. Hunter, T., and B. Francke. 1974. In vitro polyoma DNA synthesis characterization of a system from infected 3T3 cells. J. Virol. 13: 125–139.Google Scholar
  13. Karl, D. M. 1979. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl. Environ. Microbiol. 38: 859–860.Google Scholar
  14. Karl, D. M. 1981. Simultaneous rates of RNA and DNA syntheses for estimating growth and cell division of aquatic microbial communities. Appl. Environ. Microbiol. 42: 802–810.Google Scholar
  15. Kirchman, D., H. W. Duckow and R. Mitchell. 1982. Estimates of bacterial growth from changes in uptake rates and biomass. Appl. Environ. Microbiol. 44: 1296–1307.Google Scholar
  16. Kornberg, A. 1980. DNA Replication. W. H. Freeman, San Francisco.Google Scholar
  17. Lark, K. G. 1969. Initiation and control of DNA synthesis. Ann. Rev. Biochem. 38: 569–604.CrossRefGoogle Scholar
  18. Maaloe, O., and N. O. Kjeldgaard. 1966. Control of macromolecular synthesis. A study of DNA, RNA, and protein synthesis in bacteria. In: Microbial and Molecular Biology Series. W. A. Benjamin, Inc., New York, Amsterdam.Google Scholar
  19. Meyer-Reil, L.-A. 1977. Bacterial growth rates and biomass production, pp. 223–236.In: G. Rheinheimer [ed.]. Microbial Ecology of a Brackish Water Environment. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  20. Moriarty, D. J. W. 1983. Bacterial biomass and productivity in sediments, stromatolites and water of Hamelin Pool, Shark Bay, W. A. Geomicrobiology. In press.Google Scholar
  21. Moriarty, D. J. W. 1983. Measurement of bacterial growth rates in aquatic systems using rates of nucleic acid synthesis. Adv. Aquat. Microbiol. In press.Google Scholar
  22. Moriarty, D. J. W., and P. C. Pollard. 1982. Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar. Biol. 72: 165–173.CrossRefGoogle Scholar
  23. Moriarty, D. J. W., and P. C. Pollard. 1981. DNA synthesis as a measure of bacterial productivity in seagrass seidments. Mar. Ecol. Prog. Ser. 5: 151–156.CrossRefGoogle Scholar
  24. Munro, H. N., and A. Fleck. 1966. The determination of nucleic acids, pp. 113–176.In: D. Glick [ed.], Methods of Biochemical Analysis, Vol. 14. Interscience Publishers, John Wiley and Sons, New York, London, Sydney.Google Scholar
  25. Newell, S. Y., and R. R. Christian. 1981. Frequency of dividing cells as an estimator of bacterial productivity. Appl. Environ. Microbiol. 42: 23–31.Google Scholar
  26. Nierlich, D. P. 1974. Regulation of bacterial growth. Science 184: 1043–1050.ADSCrossRefGoogle Scholar
  27. Nierlich, D. P. 1978. Regulation of bacterial growth, RNA, and protein synthesis. Ann. Rev. Microbiol. 32: 393–432.CrossRefGoogle Scholar
  28. O’Donovan, G. A., and J. Neuhard, 1970. Pyrimldine metabolism In microorganisms. Bacteriol. Rev. 34: 278–343.Google Scholar
  29. Plant, W., and A. Sagan. 1958. Incorporation of thymidine in the cytoplasm of Amoeba proteus. J. Biophys. Biochem. Cytol. 4: 843–847.CrossRefGoogle Scholar
  30. Ramsay, A. J. 1974. The use of autoradiography to determine the proportion of bacteria metabolizing in an aquatic habitat. J. Gen Microbiol. 80: 363–373.Google Scholar
  31. Rosenbaum-Oliver, D., and S. Zamenhof. 1972. Degree of participation of exogenous thymidine in the overall deoxyribonucleic acid synthesis in Escherichia coli. J. Bacteriol. 110: 585–591.Google Scholar
  32. Sagan, L. 1965. An unusual pattern of tritiated thymidine incorporation in Euglena. J. Protozool. 12: 105–109Google Scholar
  33. Steffensen, D. M., and W. F. Sheridan. 1965. Incorporation of 3H-thymidine into chloroplast DNA of marine algae. J. Cell Biol. 25: 619–626.CrossRefGoogle Scholar
  34. Stocking, C. R., and E. M. Gifford Jr. 1959. Incorporation of thymidine into chloroplasts of Spirogyra. Biochem. Biophys. Res. Commun. 1: 159–164.CrossRefGoogle Scholar
  35. Stone, G. E., and D. M. Prescott. 1964. Cell division and DNA synthesis in Tetrahymena pyriformis deprived of essential amino acids. J. Cell Biol. 21: 275–281.CrossRefGoogle Scholar
  36. Swinton, D. C., and P. C. Hanawalt. 1972. In vivo specific labeling of Chlamydomonas chloroplast DNA. J. Cell Biol. 54: 592–597.CrossRefGoogle Scholar
  37. Venkatesan, N. 1977. Mechanism of inhibition of DNA synthesis by cycloheximide in Balb/3T3 cells. Biophys. Acta 478: 437–453.Google Scholar
  38. Wright, R. T., and J. E. Robbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. J. W. Moriarty
    • 1
  1. 1.Division of Fisheries ResearchCSIRO Marine LaboratoriesClevelandAustralia

Personalised recommendations