Microbial Processes in the Sea: Diversity in Nature and Science

  • Lawrence R. Pomeroy
Part of the NATO Conference Series book series (NATOCS, volume 15)


Marine microbial ecology is, as its name implies, an interdisciplinary pursuit which draws not from two but from several disciplines, creating a unique and diversified field for research. The results of this interaction of disciplines have had some impact on ecological theory. For example, recent advances in marine microbial ecology have made the trophic level concept almost meaningless, because microorganisms enter food webs at many trophic levels simultaneously. Also, studies of microorganisms have contributed to the demise of the belief in a standard “ecological efficiency” or 10 percent per trophic level, and they have done violence to the concept of a pyramid of numbers, or biomass, in natural communities. At the same time, recent developments in microbial ecology have been influenced by ecological concepts and methods, and many of the classical methods of microbiology have been replaced in marine studies by ones developed by ecologists. The recent results have brought the realization that microbial activities in the ocean biome are greater quantitatively and more varied than marine ecologists had realized.


Particulate Organic Carbon Marine Bacterium Fecal Pellet Microbial Process Vertical Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M, 1980. Helpful, harmful, and fallible microorganisms: Importance in transformations of chemical pollutants. Microbiology 80: 328–332.Google Scholar
  2. Azam, F., and R. E. Hodson. 1977. Dissolved ATP in the sea and its utilization by marine bacteria. Nature 267: 696–697.ADSCrossRefGoogle Scholar
  3. Azam, F., and O. Holm-Hansen. 1973. Use of tritiated substrates in the study of heterotrophy in seawater. Mar. Biol. 23: 191–196.CrossRefGoogle Scholar
  4. Barsdate, R. J., R. T. Prentki, and T. Fenchel. 1974. Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers. Oikos 25: 239–251.CrossRefGoogle Scholar
  5. Beuchler, D. G., and R. D. Dillon. 1974. Phosphorus regeneration in freshwater paramecia. J. Protozool. 21: 339–343.Google Scholar
  6. Bishop, J. K. B., R. W. Collier, D. R. Ketten, and J. M. Edmond. 1980. The chemistry, biology, and vertical flux of particulate matter from the upper 1500 m of the Panama Basin. Deep-Sea Res. 27: 591–614.CrossRefGoogle Scholar
  7. Bishop, J. K. B., J. M. Edmond, D. R. Ketten, M. P. Bacon, and W. B. Silker. 1977. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the equatorial Atlantic Ocean. Deep-Sea Res. 24: 511–548.CrossRefGoogle Scholar
  8. Bishop, J. K. B., D. R. Ketten, and J. M. Edmond. 1978. The chemistry, biology, and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic Ocean. Deep-Sea Res. 25: 1121–1162.CrossRefGoogle Scholar
  9. Bricker, O. P., and J. M. Prospero. 1969. Airborne dust in the Bermuda Islands and Barbados. (Abstract) Trans. Am. Geophys. Union 50: 176.Google Scholar
  10. Bryan, J. R., J. P. Riley, and P. J. leB. Williams. 1976. A Winkler procedure for making precise measurements of oxygen concentration for productivity and related studies. J. Exp. Mar. Biol. Ecol. 21: 191–197.CrossRefGoogle Scholar
  11. Bubnov, V. A. 1966. The distribution pattern of minimum oxygen concentrations in the Atlantic. Okeanologiya 6: 240–250.Google Scholar
  12. Campbell, W. B., T. R. Jacobsen, and L. R. Pomeroy. 1979. Heterotrophic-photoautotrophic index: a qualitative parameter of microbial interactions applied to a Gulf Stream intrusion. Mar. Sci. Commun. 5: 383–398.Google Scholar
  13. Cope, M. J., and W. G. Chaloner. 1980. Fossil charcoal as evidence of past atmospheric composition. Nature 283: 647–649.ADSCrossRefGoogle Scholar
  14. Dagg, M. J. 1974. Loss of prey body contents during feeding by an aquatic predator. Ecology 55: 903–906.CrossRefGoogle Scholar
  15. Delaney, A. C., A. C. Delaney, D. W. Parker, J. J. Griffin, E. D. Goldberg and B. E. F. Reimann. 1967. Airborne dust collected at Barbados. Geochim. Geocosmochim. Acta 31: 885–909.ADSCrossRefGoogle Scholar
  16. Dereppe, J. -M., C. Moreaux, and Y. Debyser. 1980. Investigation of marine and terrestrial humic substances by 1H and 13C nuclear magnetic resonance and spectroscopy. Org. Geochem. 2: 117–124.CrossRefGoogle Scholar
  17. Eichmann, R., P. Neuling, G. Ketseridis, J. Hahn, R. Jaenicke, and C. Junge. 1979. N-alkane studies in the troposphere. I. Gas and particulate concentrations in North Atlantic air. Atmos. Environ. 13: 587–599.CrossRefGoogle Scholar
  18. Elliott, W. P. 1976. Condensation nuclei concentrations over the Mediterranean Sea. Atmos. Environ. 10: 1091–1094.CrossRefGoogle Scholar
  19. Eppley, R. W., and B. J. Peterson. 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.ADSCrossRefGoogle Scholar
  20. Fellows, D. A., D. M. Karl, and G. A. Knauer. 1981. Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-Sea Res. 28: 921–936.CrossRefGoogle Scholar
  21. Fenchel, T. 1970. Studies on the decomposition of organic detritus derived from turtle grass Thalassia testudinum. Limnol. Oceanogr. 15: 14–20.Google Scholar
  22. Fenchel, T. 1977. The significance of bactivorous protozoa in the microbial community of detritus particles, pp. 529–544. J. Cairns [ed.]. Aquatic Microbial Communities. Garland Publ. Co.Google Scholar
  23. Ferrante, J. G., and D. J. Ptak. 1978. Heterotrophic bacteria associated with the degradation of zooplankton fecal pellets in Lake Michigan. J. Great Lakes Res. 4: 221–225.CrossRefGoogle Scholar
  24. Fogg, G. E. 1971. Extracellular products of algae in fresh water. Arch. Hydrobiol. 5: 1–25.Google Scholar
  25. Folger, D. W. 1970. Wind transport of land-derived mineral, biogenic, and industrial matter over the North Atlantic. Deep-Sea Res 17: 337–352.Google Scholar
  26. Fuhrman, J. A., J. W. Ammerman, and F. Azam. 1980. Bacterioplank-- ton in the coastal euphotic zone: Distribution, activity and possible relationships with phytoplankton. Mar. Biol. 60: 201–207.CrossRefGoogle Scholar
  27. Fuhrman, J. A., and F. Azam. 1980. Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California. Appl. Environ. Microbiol. 39: 1085–1095.Google Scholar
  28. Gordon, D. C. 1970a. A microscopic study of particles in the North Atlantic Ocean. Deep-Sea Res. 17: 175–185.Google Scholar
  29. Gordon, D. C. 1970b. Some studies on the distribution and composition of particulate organic carbon in the North Atlantic Ocean. Deep-Sea Res. 17: 233–243.Google Scholar
  30. Haas, L. W., and K. L. Webb. 1979. Nutritional mode of several non-pigmented microflagellates from the York River estuary, Virginia. J. Exp. Mar. Biol. Ecol. 39: 125–134.CrossRefGoogle Scholar
  31. Hagström, Ä., U. Larsson, P. Horstedt, and S. Normark. 1979. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl. Environ. Microbiol. 37: 805–812.Google Scholar
  32. Hatcher, P. G., R. Rowan, and M. A. Mattingly. 1980. 1H and 13C NMR of marine humlc acids. Org. Geochem. 2: 77–85.CrossRefGoogle Scholar
  33. Herbland, H. 1975. Utilization par la flore heterotrophe de la matiere organique naturelle dans I’eau de mer. J. Exp. Mar. Biol. Ecol. 19: 19–31.CrossRefGoogle Scholar
  34. Ho, K. P., and W. J. Payne. 1979. Assimilation efficiency and energy contents of prototrophic bacteria. Biotechnol. Bioeng. 21: 787–802.CrossRefGoogle Scholar
  35. Hobbie, J. E., and C. C. Crawford. 1969. Respiration corrections for bacterial uptake of dissolved organic compounds in natural waters. Limnol. Oceanogr. 14: 528–532.CrossRefGoogle Scholar
  36. Hobbie, J. E., O. Holm-Hansen, T. H. Packard, L. R. Pomeroy, R. W. Sheldon, J. P. Thomas, and W. J. Wiebe. 1972. A study of the distribution and activity of microorganisms in ocean water. Limnol. Oceanogr. 17: 544–555.CrossRefGoogle Scholar
  37. Hodson, R. E., A. E. Maccubbin, and L. R. Pomeroy. 1981. Dissolved adenosine triphosphate and its utilization by free-living and attached bacterioplankton. Mar. Biol. 64: 43–51.CrossRefGoogle Scholar
  38. Hofmann, E. E., J. M. Klinck, and G.-A. Paffenhofer. 1981. Concentrations and vertical fluxes of zooplankton fecal pellets on a continental shelf. Mar. Biol. 61: 327–335.CrossRefGoogle Scholar
  39. Honjo, S. 1978. Sedimentation of materials in the Sargasso Sea at a 5,367 m deep station. J. Mar. Res. 36: 469–492.Google Scholar
  40. Honjo, S. 1980. Material fluxes and modes of sedimentation in the mesopelagic and bathypelagic zones. J. Mar. Res. 38: 53–97.Google Scholar
  41. Jacobsen, T. R. 1981. Autotrophic and heterotrophic activity measurements on the continental shelf of Southeastern U. S. Doctoral dissertation. University of Georgia.Google Scholar
  42. Jannasch, H. W., and C. O. Wirsen. 1973. Deep-sea microorganisms: In situ response to nutrient enrichment. Science 180: 641–643.ADSCrossRefGoogle Scholar
  43. Jannasch, H. W., K. Eimhjellen, C. O. Wirsen, and A. Farmanfarmaian. 1971. Microbial degradation of organic matter in the deep sea. Science 171: 672–675.ADSCrossRefGoogle Scholar
  44. Janzen, D. H. 1977. Why fruits rot, seeds mold, and meat spoils. Am. Nat. 111: 691–713.CrossRefGoogle Scholar
  45. Johannes, R. E. 1964. Phosphorus excretion as related to body size in marine animals: microzooplankton and nutrient regeneration. Science 146: 932–934.ADSCrossRefGoogle Scholar
  46. Johannes, R. E. 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 434–442.CrossRefGoogle Scholar
  47. Johnson, B. D. 1976. Nonliving organic particle formation from bubble dissolution. Limnol. Oceanogr. 21: 444–446.CrossRefGoogle Scholar
  48. Johnson, B. D., and R. C. Cooke. 1980. Organic particle and aggregate formation resulting fom the dissolution of bubbles in sea water. Limnol. Oceanogr. 25: 653–661.CrossRefGoogle Scholar
  49. Johnson, P. W., and J. McN. Sieburth. 1979. Chroococcoid cyano- bacteria in the sea, a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24: 923–935.Google Scholar
  50. Karl, D. M. 1979. Measurement of microbial activity and growth in the ocean by rates of stable ribonucleic acid synthesis. Appl.Environ. Microbiol. 38: 850–860.Google Scholar
  51. Karl, D. M., P. A. LaRock, J. W. Morse, and W. Sturges. 1976. Adenosine triphosphate in the North Atlantic Ocean and its relationship to the oxygen minimum. Deep-Sea Res. 23: 81–88.Google Scholar
  52. Kerrick, K. H. 1981. Studies on the relationships of marine bacteria with particulate material and with protozoan predators. Doctoral dissertation. University of Georgia.Google Scholar
  53. Ketseridis, G., J. Hahn, R. Jaenicke, and C. Junge. 1976. The organic constituents of atmospheric particulate matter. Atmos. Environ. 10: 603–610.CrossRefGoogle Scholar
  54. Keys, A., E. H. Christiensen, and A. Krogh. 1935. The organic metabolism of sea-water with special reference to the ultimate food cycle of the sea. J. Mar. Biol. Assoc. UK 20: 181–196.CrossRefGoogle Scholar
  55. King, K. R., J. T. Hollibaugh, and F. Azam. 1980. Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns. Mar. Biol. 56: 49–57.CrossRefGoogle Scholar
  56. Kranck, K., and T. Milligan. 1980. Macroflocs: production of marine snow in the laboratory. Mar. Ecol. Prog. Ser, 3: 19–24.CrossRefGoogle Scholar
  57. Lampert, W. 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–834.CrossRefGoogle Scholar
  58. Malone, T. C. 1980. Size-fractionated primary productivity of marine phytoplankton, pp 301–319. P. G. Falkowski [ed.], Primary Productivity in the Sea. Plenum Press, New York.Google Scholar
  59. Menzel, D. W., and J. H. Ryther. 1968. Organic carbon and the oxygen minimum in the South Atlantic Ocean. Deep-Sea Res. 15: 327–337.Google Scholar
  60. Morita, R. Y. 1980. Low temperature, energy, survival, and time in microbial ecology, pp. 62–66. R. R. Colwell and J. Foster [eds.]. Aquatic Microbial Ecology. Maryland Sea Grant Publ. No. UM-SG-TS-80–03.Google Scholar
  61. Morris, B. F., J. Cadwallader, J. Geiselman, and J. N. Butler. 1976. Transfer of petroleum and biogenic hydrocarbons in the Sargassum community, pp. 235–259. In: H. L. Windom and R. A. Duce [eds.]. Marine Pollutant Transfer. Lexington Books.Google Scholar
  62. Nalewajko, C. 1977. Extracellular release in freshwater algae and bacteria: Extracellular products of algae as a source of carbon for heterotrophs, pp. 589–624. In : J. Cairns [ed.]. Aquatic Microbial Communities. Garland Publ. Co.Google Scholar
  63. Odum, H. T., R. J. Beyers, and N. E. Armstrong. 1963. Consequences of small storage capacity in nanoplankton pertinent to measurement of primary production in tropical waters. J. Mar. Res. 21: 191–198.Google Scholar
  64. Parsons, T. R., M. Takahashi, and B. Hargrave. 1977. Biological Oceanographic Processes, 2nd Edition. Pergamon Press.Google Scholar
  65. Payne, W. J. 1970. Energy yields and growth of heterotrophs. Ann. Rev. Microbiol. 24: 17–52.CrossRefGoogle Scholar
  66. Pomeroy, L. R., and F. M. Bush. 1959. Regeneration of phosphate by marine animals, pp. 893–895. Preprints, Int. Oceanogr. Congr., New York.Google Scholar
  67. Pomeroy, L. R., and D. Deibel. 1980. Aggregation of organic matter by pelagic tunlcates. Limnol. Oceanogr. 25: 643–652.CrossRefGoogle Scholar
  68. Pomeroy, L. R., and R. E. Johannes. 1968. Respiration of ultra- plankton in the upper 500 meters of the ocean. Deep-Sea Res. 15: 381–391.Google Scholar
  69. Pomeroy, L. R., H. M. Matthews, and H. S. Min. 1963. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr. 8: 50–55.CrossRefGoogle Scholar
  70. Porter, K. G., and E. I. Robbins. 1981. Zooplankton fecal pellets link fossil fuel and phosphate deposits. Science 212: 931–933.ADSCrossRefGoogle Scholar
  71. Rasmussen, R. A., and F. W. Went. 1965. Volatile organic material of plant origin in the atmosphere. Proc. Nat. Acad. Sci. USA 53: 215–220.ADSCrossRefGoogle Scholar
  72. Riley, G. A. 1963. Organic aggregates in sea water and the dynamics of their formation and utilization. Limnol. Oceanogr. 8: 372–381.CrossRefGoogle Scholar
  73. Ryther, J. H. 1956. The measurement of primary production. Limnol. Oceanogr. 1: 72–84.CrossRefGoogle Scholar
  74. Schwartz, R. M., and M. O. Dayhoff. 1978. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts. Science 199: 395–400.ADSCrossRefGoogle Scholar
  75. Shanks, A. L., and J. D. Trent. 1980. Marine snow: Sinking rates and potential role in vertical flux. Deep-Sea Res. 27A: 137–143.CrossRefGoogle Scholar
  76. Shapiro, J. 1967. Induced rapid release and uptake of phosphate by microorganisms. Science 155: 1269–1271.ADSCrossRefGoogle Scholar
  77. Sieburth, J. McN., and A. S. Dietz. 1974. Biodeterioration in the sea and its inhibition, pp. 318–326. In: R. R. Colwell and R. Y. Morita [eds.]. Effect of the Ocean Environment on Microbial Activities. University Park Press.Google Scholar
  78. Smith, D. F., and W. J. Wiebe. 1976. Constant release of photo- synthate from marine phytoplankton. Appl. Environ. Microbiol. 32: 75–79.Google Scholar
  79. Steele, J. H. 1974. The Structure of Marine Ecosystems. Harvard Univ. Press.Google Scholar
  80. Sverdrup, H. U. 1955. The place of physical oceanography in ocean- ographic research. J. Mar. Res. 14: 287–294.Google Scholar
  81. Tenore, K. R. 1977. Utilization of aged detritus derived from different sources by the polychaete, Capitella capitata. Mar. Biol. 44: 51–55.CrossRefGoogle Scholar
  82. Tenore, K. R., J. H. Tietjen, and J. J. Lee. 1977. Effect of meiofauna on incorporation of aged eelgrass, Zostera marina, detritus by the polychaete, Nephthys incisa. J. Fish. Res. Board Can. 34: 563–567.CrossRefGoogle Scholar
  83. Thomas, J. P. 1971. Release of dissolved organic matter from natural populations of marine phytoplankton. Mar. Biol. 11: 311–323.CrossRefGoogle Scholar
  84. Turner, J. T., and J. G. Ferrante. 1979. Zooplankton fecal pellets in aquatic ecosystems. Bioscience 29: 670–677.CrossRefGoogle Scholar
  85. Van Valen, L. 1971. The history and stability of atmospheric oxygen. Science 171: 439–443.ADSCrossRefGoogle Scholar
  86. Vernadskii, V. I. 1926. Biosfera. Leningrad.Google Scholar
  87. Waksman, S. A., C. L. Carey, and H. W. Reuszer. 1933. Marine bacteria and their role in the cycle of life in the sea. I. Decomposition of marine plant and animal residues by bacteria. Biol. Bull. 65: 57–59CrossRefGoogle Scholar
  88. Walsh, J. J., G. T. Rowe, R. L. Iverson, and C. P. McRoy. 1981. Biological export of shelf carbon is a sink of the global CO2 cycle. Nature 291: 196–201.ADSCrossRefGoogle Scholar
  89. Waterbury, J. B., S. W. Watson, R. R. L. Guillard, and L. E. Brand. 1979. Widespread occurrence of a unicellular, marine, plank- tonic, cyanobacterium. Nature 277: 293–294.ADSCrossRefGoogle Scholar
  90. Went, R. 1966. On the nature of Aitken condensation nuclei. Tellus 18: 549–556.ADSCrossRefGoogle Scholar
  91. Went, F. W., D. B. Slemmons, and H. N. Mozingo. 1967. The nature of atmospheric condensation nuclei. Proc. Nat. Acad. Sci. USA 58: 69–74.ADSCrossRefGoogle Scholar
  92. Wheeler, J. R. 1975. Formation and collapse of surface films. Limnol. Oceanogr. 20: 338–342.CrossRefGoogle Scholar
  93. Wiebe, W. J., and L. R. Pomeroy. 1972. Microorganisms and their association with aggregates and detritus in the sea: a microscopic study. Mem. 1st. Ital. Idrobiol. 29 (Suppl.): 325–352.Google Scholar
  94. Wiebe, W. J., and D. F Smith. 1977. Direct measurement of dissolved organic carbon release by phytoplankton and incorporation by microheterotrophs. Mar. Biol. 42: 213–223.CrossRefGoogle Scholar
  95. Wiegert, R. G., and D. F. Owen. 1971. Trophic structure, available resources, and population density in terrestrial vs. aquatic ecosystems. J. Theor. Biol. 30: 69–81.Google Scholar
  96. Williams, P. J. leB. 1970. Heterotrophic utilization of dissolved organic compounds in the sea. I. Size distribution of populations and relationship between respiration and incorporation of growth substrates. J. Mar. Biol. Assoc. UK 50: 859–258.Google Scholar
  97. Williams, P. J. leB. 1981 Incorporation of microheterotrophicGoogle Scholar
  98. processes into the classical paradigm of the planktonic food web. Kiel. Meeresforsch. Sonderh. 5: 1–28.Google Scholar
  99. Williams, P. M., H. Oeschger, and P. Kinney. 1969. Natural radiocarbon activity of the dissolved organic carbon in the northeast Pacific Ocean. Nature 224: 256–258.ADSCrossRefGoogle Scholar
  100. Wright, R. T., and J. E. Robbie. 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology 47: 447–464.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Lawrence R. Pomeroy
    • 1
  1. 1.Institute of EcologyUniversity of GeorgiaAthensUSA

Personalised recommendations