Critical Analysis of Pattern Evoked Potential Recording Techniques

  • Ivan Bodis-Wollner
Part of the Topics in Neurosurgery book series (TINS, volume 2)


In the last decade, it has become increasingly apparent that demyelination is not the only cause of an abnormal Visual Evoked Potential (VEP), but that among other things, pathology of the intraretinal optic nerve as in glaucoma (1), axonal neuropathy (2) and synaptic neurotransmitter deficiency (3) may cause delayed VEPs. Maculopathy also induces VEP delays, [4, 5, 6]. Several of these studies have shown that stimulus “details” such as element size, orientation and luminance, influence VEP diagnosis. From these and other unquoted studies, it is becoming evident that making that simple distinction betrween flash vs. pattern stimulation is not sufficient: one has to differentiate between one pattern and another. Selecting stimuli and appropriate analytical methods has become more important in clinical EP practice. In this chapter no attempt will be made to review all of the different EP techniques currently in use, but, rather advanced aspects of the foveal VEP will be discussed. The relevant physiology will be summarized. For addressing the foveal pathways, the pattern element size needs to be matched to the physiological constraints of foveal vision in humans. Several properties of human foveal vision are known from spatial contrast sensitivity (C.S.) measurements which will be described. Clinical studies which demonstrate the importance of selecting physiologically meaningful patterns for clinical VEP diagnosis will be summarized.


Spatial Frequency Ganglion Cell Retinal Ganglion Cell Contrast Sensitivity Visual Evoke Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marx MS, Bodis-Wollner I, Teitelbaum CS, Podos SM: The pattern ERG and VEP in glaucomatous optic nerve disease in the monkey and human. In: Evoked Potentials, eds RQ Cracco and I Bodis-Wollner, Alan R, Liss, New York, in press.Google Scholar
  2. 2.
    Kriss A, Carrol WM, Blumhardt LD, Halliday AM: Pattern and flash evoked potential changes in toxic (nutritional) optic neuropathy. In: J Courjon, F Mauguière and M Revol (eds) Clinical Applications of Evoked Potentials in Neurology. Raven Press, New York pp. 11–19, 1982.Google Scholar
  3. 3.
    Bodis-Wollner I, Yahr MD: Measurement of Visual Evoked Potentials in Parkinson’s Disease. Brain 101:661–671, 1978.PubMedCrossRefGoogle Scholar
  4. 4.
    Bodis-Wollner I, Feldman R: Old perimacular pathology causes VEP delays in man. Electro- encephalogr Clin Neurophysiol 53:38p-39p, 1982.Google Scholar
  5. 5.
    Lennerstrand G: Delayed Visual Evoked Cortical Potentials in retinal disease. Acta Ophthal- mologica 60:497–504, 1982.CrossRefGoogle Scholar
  6. 6.
    Papakostopoulos D, Hart CD, Cooper R, Natsikos V: Combined electrophysiological assessment of the visual system in central serious retinopathy. Electroencephalogr Clin Neurophysiol 59:77–80, 1984.PubMedCrossRefGoogle Scholar
  7. 7.
    Cohen JL, Dowling, JE: The role of the retinal interplexiform cell: Effects of 6-hydroxydop- amine on the spatial properties of carp horizontal cells. Brain Res 264:307–310, 1983.PubMedCrossRefGoogle Scholar
  8. 8.
    Piccolino M, Neyton J, Gerschenfeld HM: Decrease of gap junction permeabiHty induced by dopamine and cyclic AMP in horizontal cells of turtle retina. J Neurosci 4:2477–2488, 1984.PubMedGoogle Scholar
  9. 9.
    Teranishi T, Negishi K, Kato S: Regulatory effect of dopamine on spatial properties of horizontal cells in carp retina. J Neurosci 4:1271–1280, 1984.PubMedGoogle Scholar
  10. 10.
    Dowling JE, Ehinger B, Hedden WL: The interplexiform cell: A new type of retinal neuron. Invest Ophthalmol Vis Sci 15:916–926, 1976.Google Scholar
  11. 11.
    Frederick DW, Rayborn F, Laties A, Lam D, Hollyfield C: Dopamine containing neurons in the human retina J Comp Neurol 210:65–79, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    Bodis-Wollner I, Yahr MD, Mylin L and Thornton J: Dopaminergic deficiency and delayed visual evoked potentials in humans. Ann Neurol 11:478–483, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Werblin FS and Dowling JE: Organization of the retina of the mudpuppy Necturus Maculosus II. Intracellular recording. J Neurophysiol 32:339–354, 1969.PubMedGoogle Scholar
  14. 14.
    Fischer B: Overlap of receptive field centers and representation of the visual field in the cat’s optic tract. Vision Res 13:2113–2120, 1973.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuffler SW: Discharge pattern and functional organization of the mammaHan retina. J Neurophysiol 16:37–68, 1953.PubMedGoogle Scholar
  16. 16.
    Rodieck RW, Stone J: Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol 28:833–849, 1965.Google Scholar
  17. 17.
    Enroth-Cugell C, Robson JG: The contrast sensitivity of retinal ganglion cells of the cat. J Physiol 187:517–552, 1966.PubMedGoogle Scholar
  18. 18.
    Hubel DH, Wiesel TN: Receptive fields and functional architecture of monkey striate cortex. J Physiol 195:215–243, 1968.PubMedGoogle Scholar
  19. 19.
    Hochstein S, Shapley RM: Quantitative analysis of retinal ganglion cell classification. J Physiol 262:237–264, 1976.PubMedGoogle Scholar
  20. 20.
    Victor JD, Shapley RM: The nonlinear pathway of Y ganglion cells in the cat retina. J Gen Physiol 74:671–789, 1979.PubMedCrossRefGoogle Scholar
  21. 21.
    Kaplan E, Shapley RM: X- and Y- cells in the lateral geniculate nucleus of macaque monkeys. J Physiol 330:125–143, 1982.PubMedGoogle Scholar
  22. 22.
    Foster KH, Gaska OP, Nagler M and Pollen DA: Spatial and temporal frequency selectivity of neurons in visual cortical areas VI and V2 of the macaque monkey. J Physiol 365: 331–363, 1985.PubMedGoogle Scholar
  23. 23.
    Yiannikas C, and Walsh DC: The variation of the pattern shift visual evoked response with the size of the stimulus field. Electroencephalogr and Clin Neurophysiol 55:427–435, 1983.CrossRefGoogle Scholar
  24. 24.
    Blumhardt LD, Barrett G, Halliday AM, Kriss A: The asymmetrical visual evoked potential to pattern reversal in one half field and its significance for the analysis of visual field defects. Br J Ophthalmol 61:454–461, 1977.PubMedCrossRefGoogle Scholar
  25. 25.
    Celesia GG, Meredith JT, Pluff, K: Perimetry, visual evoked potentials and visual spectrum array in homonymous hemianopsia. Electroencephalogr Clin Neurophysiol 56:16–30, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Onofrj M, Bodis-Wollner I, Mylin LH: Visual evoked potential diagnosis of field defects in patients with chiasmatic and retrochiasmatic lesions. J Neurol Neurosurg Psychiatry 45: 294–302, 1982.PubMedCrossRefGoogle Scholar
  27. 27.
    Rowe M J III: The clinical utility of half field pattern reversal visual evoked potential testing. Electroencephalogr Clin Neurophysiol 53:73–77, 1982.PubMedCrossRefGoogle Scholar
  28. 28.
    Skrandies W: Scalp potential fields evoked by grating stimuli: effect of spatial frequency and orientation. Electroencephalogr Clin Neurophysiol 58:325–332, 1984.PubMedCrossRefGoogle Scholar
  29. 29.
    Bodis-Wollner I, Diamond S: The measurement of spatial contrast sensitivity in cases of blurred vision associated with cerebral lesions. Brain 99:695–710, 1976.PubMedCrossRefGoogle Scholar
  30. 30.
    Bodis-Wollner I: Methodological aspects of contrast sensitivity measurements in the diagnosis of optic neuropathy and maculopathy. In: Fifth International Visual Field Symposium ed EL Greve and A Heijl. The Hague: Dr. W. Junk Publishers, pp. 225–237, 1983.CrossRefGoogle Scholar
  31. 31.
    Campbell FW, Green DC: Optical and retinal factors affecting visual resolution. J Physiol 181:576–593, 1965.PubMedGoogle Scholar
  32. 32.
    Campbell FW, Gubisch RW: Optical quahty of the human eye. J Physiol 186:558–578, 1966.PubMedGoogle Scholar
  33. 33.
    Van Ness FL, Bauman MA: Spatial modulation transfer in the human eye. J Opt Soc Am 47:401–406, 1967.Google Scholar
  34. 34.
    Spekreijse H: Maturation of contrast EP-s and development of visual resolution. Arch Ital Biol 116:358–369, 1978.PubMedGoogle Scholar
  35. 35.
    Jones R, Keck MI: Visual evoked response as a function of grating spatial frequency. Invest Ophthalmol Vis Sci 17:652–659, 1978.PubMedGoogle Scholar
  36. 36.
    Parker DM, Salzen EA: Latency changcs in the human visual evoked responses to sinusoidal gratings. Vis Res 17:1201–1204, 1977.PubMedCrossRefGoogle Scholar
  37. 37.
    Plant GT, Zimmern RT, Durdan K: Transient visual evoked potentials to the pattern reversal and onset of sinusoidal gratings. Electroencephalogr Clin Neurophys 56:147–158, 1983.CrossRefGoogle Scholar
  38. 38.
    Camisa J, Mylin L, Bodis-Wollner I: The effect of stimulus orientation on the visual evoked potential in Multiple Sclerosis. Ann Neurol 10:532–539, 1981.PubMedCrossRefGoogle Scholar
  39. 39.
    Gambi D, Rossini PM, Onofrj M, Marchionno L: Visual Evoked Cortical Potentials (VECP) by television presentation of different patterned stimuli to patients with Multiple Sclcrosis. Ital J Neurol Sci 2:101–106, 1980.Google Scholar
  40. 40.
    Neima D, Regan D: Pattern visual evoked potentials and spatial vision in retrobulbar neuritis and multiple sclerosis. Arch Neurol 41:198–201, 1984.PubMedCrossRefGoogle Scholar
  41. 41.
    Hennerici M, Wenzel D, Freund HJ: The comparison of small-size rectangle and checkerboard stimulation for the evaluation of delayed visual evoked responses in patients suspected of Multiple Sclerosis. Brain 100:119–136, 1977.PubMedCrossRefGoogle Scholar
  42. 42.
    Onofrj M, Ghilardi MF, Basciani M, Gambi D: Visual Evoked Potentials in Parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J Neurol Neurosurgency Psychology 49:1150–1159, 1986.CrossRefGoogle Scholar
  43. 43.
    Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E: VEP changes in Parkinson’s Disease are stimulus specific. J Neurol Neurosurg Psychiatry 47:305–307, 1984.PubMedCrossRefGoogle Scholar
  44. 44.
    Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E: Spatial properties of patterns as determinants of visual evoked potential changes in Parkinson’s syndrome. M: “Evoked Potentials” Eds. Morocutti C and Rizzo PA, Elsevier, Amsterdam p. 321–328, 1985.Google Scholar
  45. 45.
    Bass SJ, Sherman J, Bodis-Wollner I and Nath S: Visual evoked potentials in macular disease. Invest Ophthalmol Vis Sci 26:1071–1074, 1985.PubMedGoogle Scholar
  46. 46.
    Regan D, Whitlock JA, Murray TJ, Beverly KI: Orientation-specific losses of contrast sensitivity in multiple sclerosis. Invest Ophthalmol Vis Sci 19:324–328, 1980.PubMedGoogle Scholar
  47. 47.
    Kupersmith MJ, Seiple WH, Nelson JI, Carr RE: Contrast sensitivity loss in multiple sclerosis: selectivity lay eye, orientation and spectial frequency measured with the evoked potential. Invest Ophthalmol Vis Sci Suppl 25:632–639, 1984.Google Scholar
  48. 48.
    Gilbert CD, Wiesel TN: Clustered intrinsic connections in cat visual cortex. J Neuroscience 3:1116–1133, 1983.Google Scholar
  49. 49.
    Regan D: Visual evoked potentials and visual perception in Multiple Sclerosis. Proceedings of the San Diego Biomedical Symposium 16:87–95, 1977.Google Scholar
  50. 50.
    Siegel I, Kupersmith MJ: Electrophysiological evaluation of visual loss in ophthalmology. In: Evoked Potentials, eds RQ Cracco and I Bodis-Wollner, Alan R, Liss, New York, chapter 29, p. 333–342, 1986.Google Scholar
  51. 51.
    Robinson NL, Robinson PM, Bayliss SG and Powell R: Contrast sensitive changes in visual evoked potentials. In “Evoked Potentials” eds Morocutti C and Rizzo P. Elsevier, Amsterdam p 267–272, 1985.Google Scholar
  52. 52.
    Bobak P, Bodis-Wollner I, Harnois C: VEPs in humans reveal high and low spatial contrast mechanisms. Invest Ophthalmol Vis Sci 25:104–107, 1984.Google Scholar
  53. 53.
    Regan D: Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine, London: Chapman and Hall, 1972.CrossRefGoogle Scholar
  54. 54.
    Bodis-Wollner I, Harnois C, Bobak P, Mylin LH: On the possible role of temporal delays of afferent processing in Parkinson’s Disease, J Neural Transmission, Suppl 19:243–252, 1983.Google Scholar
  55. 55.
    Atkin A, Bodis-Wollner I, Wolkstein M, Moss A, Podos S: AbnormaHties of central contrast sensitivity in glaucoma. Am J Ophthalmol 88:205–211, 1979.PubMedGoogle Scholar
  56. 56.
    Atkin A, Wolkstein M, Bodis-Wollner I, Anders M, Kels B, Podos S: Interocular comparison of contrast sensitivities in glaucoma patients and suspects. Br J Ophthalmol 64:858–862, 1980.PubMedCrossRefGoogle Scholar
  57. 57.
    Atkin A, Bodis-Wollner I, Podos S M, Wolkstein M, Mylin L H, Nitzberg S: Flicker threshold and pattern VEP latency in ocular hypertension and glaucoma. Invest Ophthalmol Vis Sci 24:1524–1528, 1983.PubMedGoogle Scholar
  58. 58.
    Bobak P, Bodis-Wollner I, Harnois C, Maffei L, Mylin LH, Podos S, Thornton J: Pattern electroretinograms and visual-evoked potentials in glaucoma and multiple sclerosis. Am J Ophthalmol 96:72–83, 1983.PubMedGoogle Scholar
  59. 59.
    Bodis-Wollner K: Differences in low and high spatial frequency vulnerabilities in ocular and cerebral lesions. In: Pathophysiology of the Visual System, ed L Maffei, The Hague; Dr W Junk, pp 195–204, 1981.Google Scholar
  60. 60.
    Towle VL, Moskowitz A, Sokol S, Schawartz, B: The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size and stimulation rate. Invest Ophthalmol Vis Sci 24:175–183, 1983.PubMedGoogle Scholar
  61. 61.
    Quigley HA, Hendrickson A: Chronic experimental glaucoma in primates: blood flow study with iodantipyrine and pattern of selective gangHon cell loss. Invest Ophthalmol Vis Sci Suppl 24:225, 1984.Google Scholar
  62. 62.
    Maffei L, Fiorentini A, Hollander H: Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59:423–425, 1985.PubMedCrossRefGoogle Scholar
  63. 63.
    Korth M: Pattern evoked responses and luminance-evoked responses in the human electro- retinogram. J Physiol 337:451–469, 1983.PubMedGoogle Scholar
  64. 64.
    Korth M, Rix R, Sembritzki O: Spatial contrast transfer functions of the pattern evoked electreretinogram. Invest Ophthalmal Vis Sci 26:303–308, 1985.Google Scholar
  65. 65.
    Rover J, Schaubele G, Berndt K: Macula and periphery: their contribution to the visual evoked potential (VEP) in humans. Albrecht Von Graefes Arch Klin Ophthalmol 214:47–51, 1980.CrossRefGoogle Scholar
  66. 66.
    van Lith GHH, van Marie GW, van Dok—Mak GTM: Variation in latency times of visually evoked cortical potentials. Br J Ophthalmol 62:220–222, 1978.PubMedCrossRefGoogle Scholar
  67. 67.
    Marx M, Bodis-Wollner I, Bobak PH, Harnois C, Mylin L and Yahr MD: Temporal frequency-dependent VEP changes in Parkinson’s Disease. Vis Res 26:185–193, 1986.PubMedCrossRefGoogle Scholar
  68. 68.
    Bodis-Wollner I, Feldman RG, Quillory SL, Mylin L: Delayed visual evoked potentials are independent of pattern orientation in macular disease. Electroencephalogr Clin Neurophys 68:172–179, 1987.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers, Boston 1989

Authors and Affiliations

  • Ivan Bodis-Wollner

There are no affiliations available

Personalised recommendations