Advertisement

Operant Methods Assessing the Effects of ELF Electromagnetic Fields

  • John de Lorge
  • M. Jackson Marr

Abstract

The recent surge of research on ELF electromagnetic radiation has devoted much concern to behavioral effects on animals. Frequently, the rationale for this research has been to reveal effects of ELF fields on physiological substrates manifested by the measured behavior. While this goal is laudable, such an approach often ignores the rich but orderly fabric of the primary dependent variable — behavior. The physiological bases of all but the simplest behaviors are, at best, obscure and likely to remain so in the absence of careful specification of the environmental variables of which behavior is a function. Thus analyses of the effects of ELF electromagnetic radiation (as well as other agents) on behavior should be pursued in its own right without the necessity to physiologize. Appropriately identified behavioral effects of ELF fields might prove of enormous significance. For example, Marr, Rivers, & Burns (1973) noted: “Considering the ubiquity of ELF electromagnetic fields of low intensity it is of considerable biological interest to determine whether they are detectable by organisms. If a species of organism could detect the presence of such fields, it might imply that natural fields play a role in controlling significant behaviors of the species.

Keywords

Operant Method Conditioned Suppression Operant Behavior Interresponse Time Reaction Time Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALTMANN, G., Die physiologische Wirkung elektrischer Felder auf Organismen. Avohiv. fuer Meteorologie, Geophysik und Bioklimatologie, 1969, 17, 269–290.CrossRefGoogle Scholar
  2. AUTOR, S.M., The strength of conditioned reinforcers as a function of frequency and probability of reinforcement. In: D.P. Hendry (Ed.), Conditioned reinforcement. Homewood, I11: Dorsey Press, 1969. Pp. 127–162.Google Scholar
  3. BARNOTHY, M. (Ed.), Biological effects of magnetic fields. New York: Plenum Press, 1964, 1969. 2 vols.Google Scholar
  4. CATANIA, A.C., Concurrent operants. In: Werner K. Honig (Ed.), Operant behavior: Areas of research and opplication. New York: Appleton-Century-Crofts, 1966. Pp. 213–270.Google Scholar
  5. CATANIA, A.C., Reinforcement schedules and psychophysical judgments: A study of some temporal properties of behavior. In: W.N. Schoenfeld (Ed.), The theory of reinforcement schedules. New York: Appleton- Century-Crof ts, 1970. Pp. 1–42.Google Scholar
  6. DE LORGE, J., Operant behavior of rhesus monkeys in the presence of extremely low frequency-low intensity magnetic and electric fields: Experiment 1. NAMRL-1155. Pensacola, Florida: Naval Aerospace Medical Research Laboratory, 1972.Google Scholar
  7. DE LORGE, J., Operant behavior of rhesus monkeys in the presence of extremely low frequency — low intensity magnetic and electric fields: Experiment 2. NAMRL-1179. Pensacola, Florida: Naval Aerospace Medical Research Laboratory, 1973, in press, (a)Google Scholar
  8. DE LORGE, J., Operant behavior of rhesus monkeys in the presence of extremely low frequency — low intensity magnetic and electric fields. Experiment 3. Pensacola, Florida: Naval Aerospace Medical Research Laboratory, 1973, in preparation, (b)Google Scholar
  9. DEWS, P.B., Psychopharmacology. In: A.J. Bachrach (Ed.) Experimental foundations of otiniodl psychology. New York: Basic Books, Inc., 1962. Pp. 423–441.Google Scholar
  10. DEWS, P.B., The theory of fixed-interval responding. In: W.N. Schoenfeld (Ed.), The theory of reinforcement schedules. New York: Appleton-Century-Crofts, 1970. Pp. 43–61.Google Scholar
  11. ESTES, W.K., & SKINNER, B.F., Some quantitative properties of anxiety. Journal of Experimental Fsyohologyy 1941, 29, 390–400.Google Scholar
  12. FERSTER, C.B., & SKINNER, B.F., Schedules of reinforcement. New York: Appleton-Century-Crofts, 1957.CrossRefGoogle Scholar
  13. FRAENKEL, G.S., & GUNN, D.L., The orientation of animals. New York: Dover Publications, Inc., 1961.Google Scholar
  14. FRIEDMAN, H., BECKER, R.O., & BACHMAN, C.H., Effect of magnetic fields on reaction time performance. Nature, 1967, 213, 949–956.CrossRefGoogle Scholar
  15. GAVALAS, R.J., WALTER, D.O., HAMER, J., & ADEY, W.R., Effect of low-level low-frequency electric fields on EEG and behavior in Macaca nemestrina. Brain Research. 1970, 18, 491–501.CrossRefGoogle Scholar
  16. GRISSETT, J.D., Exposure of squirrel monkeys for long periods to extremely low-frequency magnetic fields: Central- nervous-system effects as measured by reaction time. NAMRL-1146. Pensacola, Florida: Naval Aerospace Medical Research Laboratory, 1971.Google Scholar
  17. GRISSETT, J.D., & DE LORGE, J., Central-nervous-system effects as measured by reaction time in squirrel monkeys exposed for short periods to extremely low- frequency magnetic fields. NAMRL-1137. Pensacola, Florida: Naval Aerospace Medical Research Laboratory, 1971.Google Scholar
  18. HERRNSTEIN, R., Quantitative hedonism. Journal of Psychiatric Research, 1971, 8, 399–412.CrossRefGoogle Scholar
  19. HONIG, W.K. (Ed.) Operant behavior: Areas of research and application. New York: Appleton-Century-Crofts, 1966.Google Scholar
  20. KELLEHER, R.T., & MORSE, W.H., Determinants of the specificity of behavioral effects of drugs, Ergebnisse Der Physiologie, 1968, 60, 1–56.Google Scholar
  21. KHOLODOV, Y., The effect of electromagnetic and magnetic fields on the central nervous system. Translation: NASATT F465. Washington, D.C.: National Aeronautics and Space Administration, 1967.Google Scholar
  22. KING, N., JUSTESEN, D., & CLARK, R., Behavioral sensitivity to microwave irradiation.Science, 1971, 172, 398–400.CrossRefGoogle Scholar
  23. KÖNIG, H.L., Uber den Einfluss besonders niederfrequenter elektrischer Vorgange in der Atmosphäre auf die Umwelt. Zeitschrift fuer Angewandte Baeder-und Klimaheitkunde, 1962, 9, 481–501.Google Scholar
  24. KRAMER, T., & RILLING, M., Differential reinforcement of low rates: A selective critique. Psychological Bulletin, 1970, 4, 225–254.CrossRefGoogle Scholar
  25. LA FORGE, H. Effet d’un champ magnetique de 800 gauss sur un comportement appris, 1973, in preparation. Cited by M.A. Persinger, H.W. Ludwig, & K-P. Ossenkopp. Psychophysiological effects of extremely low frequency electromagnetic fields: A review. Perception and Motor Skills, 1973, 36, 1140.Google Scholar
  26. LEITENBERG, H., Conditioned acceleration and conditioned suppression in pigeons. Journal of the Eo:perimental Analysis of Behavior, 1966,9, 205–209.CrossRefGoogle Scholar
  27. LUDWIG, W., & MECKE, R., Wirkung kunstlicher Atmospherics auf Sauger. Archiv fuer Meteorologie, Geophysik und Bioklimatologie, Ser. B., 1968, 16, 251–261.CrossRefGoogle Scholar
  28. MARLER, P., & HAMILTON, W.J. III., Mechanisms of animal behavior. New York: John Wiley & Sons, Inc., 1966.Google Scholar
  29. MARR, M.J., RIVERS, W.K., & BURNS, C.P., The effect of low energy, extremely low frequency (ELF) electromagnetic radiation on operant behavior in the pigeon and the rat. Final Report, February 28, 1973, Georgia Institute of Technology, Contract No. N00014–67-0159–0009, Office of Naval Research.Google Scholar
  30. MOOS, W.S., CLARK, R.K. & KROWN, F., A precision controlled environmental chamber for the study of the effects of electric fields on biological objects. International Journal of Biometeovologyy 1965, 9, 117–126.CrossRefGoogle Scholar
  31. MORRIS, D., Thresholds for conditioned suppression using X-rays as the preaversive stimulus.Journal of the Experimental Analysis of Behavior, 1966, 9, 29–34.CrossRefGoogle Scholar
  32. MORSE, W., Intermittent reinforcement. In: W. Honig (Ed.) Operant behavior: Areas of research and application. New York: Appleton-Century-Crofts, 1966. Pp. 52–108.Google Scholar
  33. MORSE, W.H., & KELLEHER, R.T., Schedules as fundamental determinants of behavior. In: W.N. Schoenfeld (Ed.), The theory of reinforcement schedules. New York: Appleton-Century-Crofts, 1970. Pp. 139–185.Google Scholar
  34. PERSINGER, M.A., LUDWIG, H.W., & OSSENKOPP, K-P., Psychophysiological effects of extremely low frequency electromagnetic fields: A review. Perceptual and Motor Skills, 1973, 36, 1131–1159.CrossRefGoogle Scholar
  35. PERSINGER, Michael A., PERSINGER, Milo A., OSSENKOPP, K-P., & GLAVIN, G.B., Behavioral changes in adult rats exposed to ELF magnetic fields. International Journal of Biometeorology, 1972, 16, 155–162.CrossRefGoogle Scholar
  36. PRESMAN, A.S., Electromagnetic fields and life. New York: Plenum Press, 1970. Pp. 250–283.Google Scholar
  37. REILLE, A., Essai de mise en evidence d’une sensibilite du pigeon au champ magnetique a I’aide d’un conditionnement nociceptif.Journal of Fhysiology, Fari’s, 1968,30, 85–92.Google Scholar
  38. SCHOENFELD, W.N. (Ed.), The theory of reinforcement schedules. New York: Appleton-Century-Crofts, 1970.Google Scholar
  39. SMITH, J., Conditioned suppression as an animal psychophysical technique. In: W.C. Stebbins (Ed.), Animal psychophysics: The design and conduct of sensory experiments. New York: Appleton-Century-Crofts, 1970, Pp. 125–159.Google Scholar
  40. SIDMAN, M., Tactics of scientific research. New York: Basic Books, 1960.Google Scholar
  41. SPITTKA, V.O., TAEGE, M., & TENBROCK, G., Experimentelle Untersuchungen zum operanten Trinkverhalten von Ratten im 50-Hz-Hochspannungswechselfeld.Biologisches Zentralhlatt, 1969, 88, 273–282.Google Scholar
  42. STEBBINS, W.C. (Ed.), Animal psychophysics: The design and conduct of sensory experiments. New York: Appleton-Century-Crofts, 1970.Google Scholar
  43. STUBBS, A., The discrimination of stimulus duration by pigeons. Journal of the Experimental Analysis of Behavior, 1968, 11, 223–238.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • John de Lorge
    • 1
  • M. Jackson Marr
    • 2
  1. 1.Naval Aerospace Medical Research LaboratoryUSA
  2. 2.Georgia Institute of TechnologyUSA

Personalised recommendations