ELF Electric and Magnetic Field Effects: The Patterns and the Problems

  • Michael A. Persinger


Whether ELF and VLF electric and magnetic fields influence biological systems to any significant extent and are consequently of practical importance per se will not be determined from the contents of this text. No doubt the implications of biofrequency magnetic and electric field effects are interesting, and there is strong evidence presented in this text that some behavioural-biological changes are associated with the presence of either environmental or experimentally produced ELF fields. However, there are still many control problems that must be resolved. In such a complex research area with limited available data, unjustified, irrelevant and often misleading interpretations can be made about the implications of results. Data collected by a small group of observers from different disciplines and conclusions drawn from data collected on one discourse level but generalized to another, must be taken with some reservation when the subject matter is new or apparently contradictory.


Magnetic Field Static Magnetic Field Pulse Magnetic Field Magnetic Field Effect Static Electric Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALVAREZ, A.M., Apparent points of contact between the daily course of the magnetic components of the earth together with certain solar elements, and the diastolic pressure of human beings and the total count of their leukocytes. Fuevto Rico J. Fuhlio Health and Tropical Medicine, 1935, 10, 374–395.Google Scholar
  2. BARNOTHY, M.F. (Ed.), Biological effects of magnetic fields. New York: Plenum Press, 1964.Google Scholar
  3. BARNOTHY, M.F. (Ed.), Biological effects of magnetic fields, Vol. 2. New York: Plenum Press, 1969.Google Scholar
  4. BARNWELL, F.H., A day to day relationship between oxidative metabolism and world-wide geomagnetic activity. Biol. Bul., 1960, 119, 303.Google Scholar
  5. BECKER, G., On the orientation of diptera according to the geomagnetic field. In: M. Barnothy (Ed.) Abstracts of the third international biomagnetic symposium. Chicago: University of I11., 1966, Pp. 9–11.Google Scholar
  6. BECKER, R.O., Electromagnetic forces and life processes. Technology Review, 1972 (December), 32–37.Google Scholar
  7. BENNETT, M.F. and HUGUENIN, J., Geomagnetic effects on cir- cadian difference in reaction time in earthworms. Z. vergl. Physiologie, 1969, 63, 440–445.Google Scholar
  8. BREZOWSKY, H. and RANSCHT-FROEMSDORFF, W.R., Herzinfarkt und Atmospherics. Z. angew. Bader-u. Klimaheilk., 1966, 13, 679–686.Google Scholar
  9. BROMM, V.B., Uber die Entstehung rhythmischer Impulsefolgen im Nerven. Fortsch. d. Med., 1971, 89, 956–1960.Google Scholar
  10. BROWN, F.A., Jr. and PARK, Y.H., Duration of an aftereffect in planarians following a reversed horizontal magnetic vector. Biol. Bul., 1965, 128, 347–355.CrossRefGoogle Scholar
  11. BULLOCK, T.H., Seeing the world through a new sense: electroception in fish. American Scientist, 1973, 61, 316–325.Google Scholar
  12. COMOROSAN, S., A new control mechanism of cellular biochemical reactions. Med. Interna., 1971, 23, 1081–1088.Google Scholar
  13. COPE, F.W., Biological sensitivity to weak magnetic fields due to biological superconductive Josephson junctions? Physiol. Chem. and Thysios, 1973, 5, 173–176.Google Scholar
  14. DEGEN, I.L., Treatment of traumatic edema with a magnetic field. Ovtop. Tvavamatol. Prot., 1970, 31, 47–49.Google Scholar
  15. de Lorge, J., Operant behavior of rhesus monkeys in the presence of extremely low frequency — low intensity magnetic and electric fields: experiment 2. Research Laboratory, NAMRL-1179, 1973a.Google Scholar
  16. de Lorge, J., Operant behavior of rhesus monkeys in the presence of extremely low frequency — low intensity magnetic and electric fields: experiment Z. Pensacola: Naval Aerospace Medical Research Laboratory, NAMRL-1196, 1973b.Google Scholar
  17. DUBROV, A.P., Effect of the geomagnetic field on physiological processes in plants. Fiziol. Rast., 1970, 17, 836–842.Google Scholar
  18. FLANIGAN, W.F. and CALDWELL, W.E., Galvanotaxic behavior and reinforcement of fish brachydanio rerio. Gen. Psych. Mon., 1971, 84, 35–71.Google Scholar
  19. FRIEDE, R.L., Topographic brain chemistry. New York: Academic Press, 1966.Google Scholar
  20. FRIEDMAN, H., BECKER, R.O. and BACHMAN, C.H., Geomagnetic parameters and psychiatric hospital admissions. Bature, 1963, 200, 626–628.Google Scholar
  21. FRIEDMAN, H., BECKER, R.O. and BACHMAN, C.H., Effect of magnetic fields on reaction time performance. Nature, 1967, 213, 949–956.CrossRefGoogle Scholar
  22. FRIEDMAN, H. and CAREY, R.J., The effects of magnetic fields upon rabbit brains. Physiol. & Behav., 1969, 4, 539–541.CrossRefGoogle Scholar
  23. GELLHORN, E. and LOOFBOURROW, G., Emotions and emotional disorders. New York: Harper & Row, 1963.Google Scholar
  24. GRANT, L., HOPKINSON, P., JENNINGS, G. and JENNER, F.A., Period of adjustment of rats used for experimental studies. Nature, 1971, 232, 135.CrossRefGoogle Scholar
  25. HALASZ, M.F., A behavioral evoked response: probing the stability of delayed conditioned approach with impulselike changes of reinforcement schedule. Canad, J. Psychol., 1968, 22, 229–243.CrossRefGoogle Scholar
  26. HAMER, J.R., Effects of low level, low frequency electric fields on human reaction time. Comnrun. in Behav. Biol., 1968, 2, 211–222. Google Scholar
  27. HANSEN, K.M., Some observations with a view to possible influence of magnetism upon the human organism. Acta Med. Soand., 1938, 97, 339–364.CrossRefGoogle Scholar
  28. HANSON, E.D., Evolution of the cell from primordial living systems. The Quarterly Review of Biology, 1966, 41, 1–12.CrossRefGoogle Scholar
  29. HEJNOWICZ, Z., Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells. Froto-plasma, 1970, 71, 343–364.Google Scholar
  30. HERIN, R.A., Electroanesthesia: a review of the literature (1819–1965). Aotiv. nerv. super., 1968, 10, 439–454.Google Scholar
  31. HOLUBAR, J., The sense of time. Cambridge, Mass. The M.I.T. Press, 1969.Google Scholar
  32. KATOLA, V.M., The effect of a permanent magnetic field on the sensitivity of bacterial populations to antibiotics. Antibiotiki, 1970, 15, 421–422.Google Scholar
  33. KEVANISHVILI, G.S. and ZHGENTI, T.G., Primary mechanism of electromagnetic field effect on living organisms. Soohshoh. Acad. Nauk. Gruz S.S.R., 1971, 62, 37–40.Google Scholar
  34. KHANANAEV, L.I. and BORODAIKEVICH, D.T., Effect of pulsed magnetic fields on chick embryos and hatchability. Biol, muki., 1973, 16, 54–58.Google Scholar
  35. KHOLODOV, Y.A., Effects on the central nervous system. In: M.F. Barnothy (Ed.). Biological effects of magnetic fields. New York: Plenum Press, 1964.Google Scholar
  36. KOLTA, P., Strong and permanent interaction between peripheral nerve and a constant inhomogenous magnetic field. Acta Physiol. Acad. Sci. Eunga, 1973, 43, 89–94.Google Scholar
  37. LINDAUER, M. and MARTIN, H., The earth’s magnetic field affects the orientation of honeybees in the gravity field. Z. vergl. Physiol., 1968, 60, 219–243.CrossRefGoogle Scholar
  38. LOTMAR, R. and RANSCHT-FROEMSDORFF, W.R., Intensitaet der Gewebeatmung und Wetterfaktoren. Z. angew. Bader, u.Klimaheil. 1968, 15, 1–10.Google Scholar
  39. LOTMAR, R., RANSCHT-FROEMSDORFF, W.R. and WEISE, H., Daempfung der Gewebeatmung von Mausleber durch kuenstliche Impulsstrahlung.Int. J. Biometeor., 1969, 13, 231–238.CrossRefGoogle Scholar
  40. LUGA, I., ROSGA, O., GHITAN, N. and RUSU, G., Influence of constant electric fields on the hatching of bombyx mori eggs, larva development and silk production. Luc. Stint., 1970, 7, 117–122.Google Scholar
  41. LUDWIG, W. and MEGKE, R., Wirkung kuenstlicher Atmospherics auf Sauger. Arch. Met. Geoph. Biokl. Bioklim. Ser. B., 1968, 16, 251–261.CrossRefGoogle Scholar
  42. LUDWIG, W., PERSINGER, M.A. and OSSENKOPP, K-P., Physiologische Wirkung elektromagnetischer Wellen bei tiefen Frequenzen. Arch, Met. Geoph. Bioklim. Ser. B., 1973, 21, 99–109.CrossRefGoogle Scholar
  43. LUTSYUK, O.B. and NAZARCHUK, G.K., Possible orientation of birds by the geomagnetic field. Vestn. Zool., 1971, 5, 35–39.Google Scholar
  44. MARGULES, D.L., LEWIS, M.T., DRAGOVICH, J.A. and MARGULES, A.S., Hypothalamic norepinephrine: circadian rhythms and the control of feeding behavior. Science, 1972, 178, 640–643.CrossRefGoogle Scholar
  45. MASORO, E.J., Fhysiologioal chemistry of lipids in mammals. Toronto: W.B. Saunders, 1968.Google Scholar
  46. McCLEAVE, J.D., ALBERT, E.H. and RICHARDSON, N. E., Fevoe-ption and effects of locomotor activity in Ameri- can eels and Atlantic salmon of extremely low frequency electric and magnetic fields. Office of Naval Research Contract No. N00014–72-C-0130, 1974.Google Scholar
  47. McGILVERY, R.W., Biochemistry — a functional approach. Toronto: W.B. Saunders, 1970.Google Scholar
  48. MIKOLAJCZYK, H., The role of connective tissue in homeostasis. Endokrynologia Polska, 1963, 14, 261–298.Google Scholar
  49. MIKOLAJCZYK, H., Changes of atmospheric pressure and mucopolysaccharides in human subjects. Endokrin. Vol., 1967, 18, 189–196.Google Scholar
  50. MIKOLAJCZYK, H., Private communication (letter), 7 June, 1974.Google Scholar
  51. MIKOLAJCZYK, H., ALLALOUF, D. and BER, A., The effect of simulated altitude on urine acid mucopolysaccharides excretion in rats. Int. J. Biometeor., 1968, 12, 283–287 (a).CrossRefGoogle Scholar
  52. MIKOLAJCZYK, H., ALLALOUF, D. and BER, A., The effect of simulated altitude on urine acid mucopolysaccharides excretion in hypophysectomized rats. Int. J. Bio- meteor., 1968, 12, 289–292 (b).Google Scholar
  53. MINKH, A.A., NEPOMNYASHCHKII, P.I. and PORTNOV, F.G., Hygienic and occupationally-pathological aspects of the biological action exerted by static electric field industry.Gig. Tr. Prof. Zahol., 1971, 15, 42–44.Google Scholar
  54. MÜLLER, W. and JITARIU, P., The effect of a variable magnetic field on the sodium permeability of the isolated frog skin. Rev. Roum. d. Biol., Series Zool., 1971, 52, 14, 273–277.Google Scholar
  55. NOVAK, J., Meteorotropic diseases and their regression in an environment devoid of electric and magnetic fields. In: S.W. Tromp and W.H. Weihe (Eds.), Fifth Bio- meteorology Congress Proceedings, Amsterdam: Spring- Verlag, 1969, Pp. 129.Google Scholar
  56. NOVIKOVA, K.F., GNEVYSHEV, M.N., TOKAREVA, N.V., OL, T. and PANOV, N., The effect of solar activity on the development of myocardial infarction and mortality resulting therefrom. Kariologia, 1968, 4, 109–112.Google Scholar
  57. ORMENYI, I., Possible effect of ELF atmospherics of 3-Hz range on traffic accidents in a metropolitan area in Hungary. In: S.W. Tromp and J.J. Bouman (Eds.) Biometeorology, Vol. 5 Part l 1972, Pp. 93–94.Google Scholar
  58. PAPAHADJOPOULOS, D. and OKHI, S., Conditions of stability for liquid-crystalline phospholipid membranes. In: J.F. Johnson and R.S. Porter (Eds.), Liquid crystals and ordered fluids. New York: Plenum Press, 1970.Google Scholar
  59. PEREIRA, M.R., NUTINI, L.G., FARDON, J.C. and COOK, E.S., Effects of intermittant magnetic fields on cellular respiration. In: M. Barnothy (Ed.), Abstracts of the third international hiomagnetio symposium, Chicago: University of I11., 1966, Pp. 19–21.Google Scholar
  60. PERSINGER, M.A., Magnetism and behavioural-physiological correlates: the problems. In: H.D. Johnson (Ed.), Progress in Animal Biometeorology. Amsterdam: Swets and Zeitlinger, 1974, in press.Google Scholar
  61. PERSINGER, M.A., LAFRENIERE, G.F. and MAINPRIZE, D.N., Human reaction time variability changes from low intensity S-Hz and 10-Ez electric fields: interactions with stimulus pattern, sex and field intensity. (in submission), 1974.Google Scholar
  62. PERSINGER, M.A., LUDWIG, H.W. and OSSENKOPP, K-P., Psychophysiological effects of extremely low frequency electromagnetic fields. Perceptual and Motor Skills, 1973, 36, 1131–1159.CrossRefGoogle Scholar
  63. PIERCE, E.T., Some ELF phenomena. J. Res., 1960, 64, 383–386.Google Scholar
  64. POLANSKY, J.R., TOOLE, B.P. and GROSS, J., Brain hyaluroni- dase: changes in activity during chick development. Science, 1974, 183, 862–864.CrossRefGoogle Scholar
  65. PRESMAN, A.S., Electromagnetic fields and life. New York: Plenum Press, 1970.Google Scholar
  66. RANSCHT-FROEMSDORFF, W., Electroklima-stimulationsgerät für tonisierende “Wetterstrahlung”. Med. -Mark. Acta Medioctech., 1968, 8, 320–322.Google Scholar
  67. REILLE, A., Essai de mise en evidence d’une sensibilite du pigeon au champ magnetique a I’aide d’un conditionnement nocieptif.J. Fhysiol. (Paris), 1968, 60, 85–92.Google Scholar
  68. ROBERTS, A. M., Effect of electric fields on mice, Nature, 1969, 223, 639.CrossRefGoogle Scholar
  69. ROBERTS, W.O., OLSON, R.H., Geomagnetic storms and wintertime 300-mb trough development in the north pacific- north america area. J. Atmosph. Sci., 1973, 30, 135–140.CrossRefGoogle Scholar
  70. RUSSO, F. and CALDWELL, W.E., Biomagnetic phenomena: some implications for the behavioral and neurophysiological sciences. Genetio Psych. Mon., 1971, 84, 177–243.Google Scholar
  71. SCHUBERT, D.S.P., A postulated effect of transmitted nerve impulses on intra-axonal dipole orientation: a basis for short and long term potentiation and fibril formation. Psychology, 1974, 11, 1–2.Google Scholar
  72. SHLYAFER, T.P. and YAKOVLEVA, M.I., Neuron activity in rat somato-sensory cortex under influence of static electric fields. Fiziol. Zh. SSR Im. Sechenova., 1970, 56, 1689–1693.Google Scholar
  73. SHYSHLO, A.A. and SHIMKEVICH, L.L., The effect of static magnetic fields on oxidative processes in albino mice. In: M. Barnothy (Ed.).Abstracts of the third international biomagnetic symposium. Chicago: University I11., 1966, Pp. 16–18.Google Scholar
  74. STEBEL, J. and SINZ, R., On the central nervous minute- periodicity and its coordination. J. Interdiscipl. Cycle Res., 1971, 2, 63–72.CrossRefGoogle Scholar
  75. STERNGLASS, E., Low-level radiation. New York: Ballantine Books, 1972.Google Scholar
  76. TENG, H.C. and HEYER, H.E., The relationship between sudden changes in weather and the occurrence of acute myocardial infarction. Am. Heart. J., 1955, 49, 9–20.CrossRefGoogle Scholar
  77. TRAUTE, V. and DULL, B., Zusammenhänge zwischen Störungen des Erdmagnetismus und Häufungen von Todesfällen. Deutsohe Med. loochen., 1935, (Jan.), 95.Google Scholar
  78. TRAVKIN, M.P., Effect of a weak magnetic field on the bioelectric potentials of Tradescantia. Fiziol. Rast., 1972, 19, 448–450.Google Scholar
  79. WAHLSTROM, G., Experimental modifications of the internal clock in the canary, studied by self-selection of light and darkness. In: J. Aschoff (Ed.),Civoadian olooks. Amsterdam: North Holland Publishing Co., 1965, Pp. 324–328.Google Scholar
  80. WALCOTT, C. and GREEN, R.P., Orientation of homing pigeons altered by change in direction of an applied magnetic field. Science, 1974, 184, 180–182.CrossRefGoogle Scholar
  81. WEBER, T. and CERILLI, G.J., Inhibition of tumor growth by the use of non-homogenous magnetic fields.Cancer, 1971, 28, 340–343.CrossRefGoogle Scholar
  82. WERBER, M., SPARKS, R.M. and GOETZ, A.C., The behavior of weakly electric fish (sternarchus albifrons) in magnetic fields. J. Gen. Fsych., 1972, 86, 3–13.CrossRefGoogle Scholar
  83. WILCOX, J.W., SCHERRER, P.H., SVALGAARD, L., ROBERTS, W.O. and OLSON, R.H., Solar magnetic sector structure: relation to circulation of earth’s atmosphere. Soienoe, 1973, 180, 185–186.Google Scholar
  84. WILLIAMS, R.J., Bioohemical individuality. New York: John Wiley and Sons, 1956.Google Scholar
  85. WILLIAMS, S.R., Magnetic phenomena. New York: McGraw- Hill Books Co., 1931, Pp. 132–136.Google Scholar
  86. YAKOVLEVA, M.I. and MEDVEDEVA, M.V., Conditioned control of cardiac activity and respiration and morphological changes in the brain of pigeons under the effect of a constant magnetic field. Zh. Vyssh. Nerv. Deyat. Pavlova., 1972, 22, 288–293.Google Scholar
  87. ZHOKHOV, V.P. and INDEIKIN, E.I., Relationship between acute attacks of glaucoma and changes in the magnetic field of the earth. Vestn. Opthalmol., 1970, 5, 29–30.Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • Michael A. Persinger
    • 1
  1. 1.Environmental Psychophysiology Lab Department of PsychologyLaurentian UniversitySudburyCanada

Personalised recommendations