Modeling of Cell Membrane Targeting: Specific Recognition, Binding, and Protein Domain Formation in Ligand-Containing Model Biomembranes

  • D. W. Grainger
  • M. Ahlers
  • R. Blankenburg
  • P. Meller
  • A. Reichert
  • H. Ringsdorf
  • C. Salesse
Part of the NATO ASI Series book series (NSSA, volume 199)


Drug delivery systems are designed to assist, accelerate, and control transport of pharmacologically active agents from sites of administration to specified targets in organs and tissues. So-called controlled drug delivery systems are intended to maintain continuously efficacious drug concentrations in vivo, either locally or systemically, over longer time periods. They should provide constant dosage levels above a minimum level of efficacy yet below mandated toxicity levels — a significant advantage over many conventional systemically administered formulations. Site-specific targeting of drugs, particularly those agents which prove highly toxic in small doses, can be utilized to maintain therapeutically relevant levels of drug to targeted tissue at a localized site specifically without systemic toxicity. Pharmaceutical problems, such as avoidance of first-pass effects in the liver, spleen, and filtration organs, solubility and stability problems in certain formulations, as well as the reliability of long-term delivery within a single device are important advantages in clinical applications of controlled and targeted drug delivery systems.


Domain Formation Lipid Monolayer Phase Transition Region Phospholipid Monolayer Enzyme Domain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlers, M., Blankenburg, R., Grainger, D.W., Melier, P., Ringsdorf, H. and Salesse, C., 1990a, Specific recognition and formation of two- dimensional streptavidin domains in monolayerst applications to molecular devices. Thin Solid Films, 180:93.CrossRefGoogle Scholar
  2. Ahlers, M., Blankenburg, R., Darst, S.A., Romberg, R.D., Kubaleck, E.W., Ribi, H.O. and Ringsdorf, H., 1990b, Two dimensional crystallization of streptavidin induced by specific binding to.biotin-lipid monolayers, Biochemistry, submitted.Google Scholar
  3. Ahlers, M., Grainger, D.W., Ringsdorf, H. and Salesse; C., 1990c, New fluorescent lipids as membrane probes: synthesis and character- zation, Chem.Phys.Lipids, submitted.Google Scholar
  4. Albrecht, O., 1989, The construction of a microprocessor-controlled film balance for precision measurement of isotherms-and isobars. Thin Solid Films, 99:227.CrossRefGoogle Scholar
  5. Blankenburg, R., Meiler, P., Ringsdorf, H. and Salesse, C., 1989, Interaction between biotin lipids and streptavidin in monolayers: formation of oriented two-dimensional protein domains induced by surface recognition. Biochemistry, 28:8214.PubMedCrossRefGoogle Scholar
  6. Bundgaard, H., Hansen, A.B. and Kofod, H., eds., 1981, “Optimization of Drug Delivery”, Munksgaard, Copenhagen.Google Scholar
  7. Chen, P., Pearce, D. and Verkman, A.S., 1988, Membrane water and solute permeability determined quantitatively by self-quenching of an entrapped fluorophore. Biochemistry, 27:5713.PubMedCrossRefGoogle Scholar
  8. lÄiathathreyan, A. and Möbius, D., 1988, Local anesthetics-phospholipid interaction. A study of dibucaine binding to lipid monolayers, Coll.Surf., 33;43.CrossRefGoogle Scholar
  9. Miathathreyan, A., Batimann, U., Muller, A. and Möbius, D., 1988, Characterization of complex gramicidin monolayers by light reflection and Fotirier transform infrared spectroscopy, Biochim. Biophys.Acta, 944:265.CrossRefGoogle Scholar
  10. Fendler, K., Grell, E. and Bamberg, E., 1987, Kinetics of pump currents generated by the sodium-potassium ATPase, FEBS Lett., 224:83.PubMedCrossRefGoogle Scholar
  11. Florsheimer, M. and Mohwald, H., 1989, Development of equilibrium domain shapes in phospholipid monolayers, Chem.Phys.Lipi, 49:231.CrossRefGoogle Scholar
  12. Gaub, H., Buschl, R., Ringsdorf, H. and Sackmann, E., 1985, Phase transitions, lateral phase separation and microstructure of model membranes composed of a polymerizable two-chain lipid and dimyristoyl- phosphatidylcholine, Chem.Phys.Lipids, 37:19.CrossRefGoogle Scholar
  13. Gaub, H.E., Moy, V.T. and McConnell, H.M., 1986, Reversible formation of plastic two-dimensional lipid crystals, J.Phys.Chem., 90:1721.CrossRefGoogle Scholar
  14. Grainger, D.W., Reichert, A., Ringsdorf, H., Salesse, C., 1989a, Ifydrolytic action of phospholipase A2 in monolayers in the phase transition region: direct observation of enzyme domain formation using fluorescence microscopy, Biochim.Biophys.Acta, in press.Google Scholar
  15. Grainger, D.W., Reichert, A., Ringsdorf, H. and Salesse, C., 1989b, An enzyme caught in action: direct imaging of hydrolytic function and domain formation of phospholipase Ao in phosphatidylcholine monolayers, FEBS Lett., 252:73.CrossRefGoogle Scholar
  16. Grainger, D.W., Reichert, A., Ringsdorf, H., Salesse, C., Davies, D. and Lloyd, J.B., 1990, Mixed monolayers of natural and polymeric phospholipids: structural characterization by physical and enzymatic methods, Biochim. Biophys.Acta, in press.Google Scholar
  17. Gregoriadis, G., Allison, A., eds., 1980, “Liposomes in Biological Systems”, J. Wiley, Chichester.Google Scholar
  18. Hashimoto, K., Loader, J.E., Knight, M.S. and Kinsky, S.C., 1985, Inhibition of cell proliferation and dihydrofolate reductase by liposomes containing methotrexate-dim5n:istoylphosphatidylethanol- amine derivatives and by the glycerophosphorylethanolamine analogs, Biochim. Biophys.Acta, 816:169.PubMedCrossRefGoogle Scholar
  19. Heckl, W.M., Zaba, B.N. and Mohwald, H., 1987, Interactions of cytochromes b5 and c with phospholipid monolayers, Biochim. Biophys.Acta, 903:166.PubMedCrossRefGoogle Scholar
  20. Hendrickson, W.A., Pahler, A., Smith, J.L., Satow, Y., Merritt, E.A. and Phizackerley, R.P., 1989, Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation, Proc.Nat1.Acad.Sci.USA, 86:2190.CrossRefGoogle Scholar
  21. Ibdah, J.A. and Phillips, M.C., 1988, Effects of lipid composition and packing on the adsorption of apolipoprotein A-1 to lipid monolayers. Biochemistry, 27:7155.PubMedCrossRefGoogle Scholar
  22. Lösche, M. and Mohwald, H., 1984, Fluorescence microscope to observe damam- ical processes’ in monomolecular layers at the air/water interface, Rev.Sci.Instrum., 55:1968.CrossRefGoogle Scholar
  23. Ludwig, D.S., Ribi, H.O. and Romberg, R.D., 1986, Two- dimensional crystals of cholera toxin B-submit-receptor complexes: projected structure at 17-A resolution, Proc.Natl.Acad. Sci.USA, 83:8585.PubMedCrossRefGoogle Scholar
  24. Matsuhita, T., Fyu, E.K., Hong, C.I. and MacCoss, M., 1981, Phospholipid derivatives of nucleoside analogs as prodrugs with enhanced cata- bolic stability. Cancer Res., 41:2707.Google Scholar
  25. Mayer, L.D., Wong, K.F., Menon, K., Chang, C., Harrigan, P.R., Cullis, P.R., 1988, Influence of ion gradients on the transbilayer distribution of dibucaine in large unilamellar vesicles. Biochemistry, 27:2053.PubMedCrossRefGoogle Scholar
  26. Melier, P., 1988, Computer-assisted video microscopy for the investigation of monolayers on liquid and solid substrates, Rev.Sci.Instrum., 59:2225.CrossRefGoogle Scholar
  27. Melier, P., 1989, Microspectroscopy on single domains of phase-separated monolayers, J.Micros,(Oxford), 156:241.CrossRefGoogle Scholar
  28. Mohwald, H., 1988, Lateral molecular organization and order in monoraolecular layers, J.Mol.Elect. 4:47.Google Scholar
  29. Nargessi, R.D. and Smith, D.S., 1986, Fluorometric assays for avidin and biotin. Methods Enzymol., 122:67.PubMedCrossRefGoogle Scholar
  30. Ohtoyo, T., Shimagaki, M., Otada, K., Kimura, S. and Imanashi, Y., 1988, Change in membrane fluidity induced by lectin-mediated phase separation of the membrane and agglutination of phospholipid vesicles containing glycopeptides. Biochemistry, 27:6458.PubMedCrossRefGoogle Scholar
  31. Patel, K.M., ïforisett, J.D. and Sparrow, J.T., 1979, A convenient synthesis of phosphatidylcholines: acylation of sn-glycero-3-phosphocholine with fatty acid anhydride and 4-p)n:rolidinopyridine, J.Lipid Res., 20:674.PubMedGoogle Scholar
  32. Ringsdorf, H., Schlarb, B. and Venzmer, J., 1988, Molecular architecture and function of polymeric oriented systems: models for the study of organisation, surface recognition and d5niamics of biomembranes, Angew.Chem.Int.Ed.Engl., 27:113.CrossRefGoogle Scholar
  33. Rosemeyer, H., Ahlers, M., Schmidt, B. and Seela, F., 1985, A nucleolipid with antiviral acycloguanosine as a head group-synthesis and liposome formation, Angew.Chem.Int.Ed.Engl., 24:501.CrossRefGoogle Scholar
  34. Sackmann, E., Duwe, H.P., Zeman, K. and Zilker, A., 1986, Elasticity, structure and dynamics of cell plasma membrane and biological functions, in: “Structure and D5mamics of Niicleic Acids, Proteins and Itonbranes”, E. Clement, S. Chin, eds.. Plenum, New York.Google Scholar
  35. Thompson, N.L., Palmer, A.G. III, Wright, L.L. and Scarborough, P.E., 1988, Fluorescence techniques for supported planar model membranes, Comm.Mol.Cell.Biophys., 5:109.Google Scholar
  36. Uzgiris, E.E. and Romberg, R.D., 1983, Two-dimensional crystallization technique for imaging macromolecules, with application to antigen- antibody-complement complexes, Nature (London), 301:125.CrossRefGoogle Scholar
  37. Venema, F.R. and Weringa, W.D., 1988, The interaction of phospholipid vesicles with some anti-inflammatory agents, J.Colloid Interface Sci., 125:484.CrossRefGoogle Scholar
  38. Weiss, R.M. and McConnell, H.M., 1984, Two-dimensional chiral crystals of phospholipid. Nature, 310:47.CrossRefGoogle Scholar
  39. Weiss, R.M., Tamm, L.K., McConnell, H.M., 1984, Periodic structures in lipid monolayer phase transitions, Proc.Natl.Acad.Sci.USA, 81:3249.CrossRefGoogle Scholar
  40. Yu, B-Z., Kozubek, Z. and Jain, M.K., 1989, Binding of phospholipase A2 to zwitterionic bilayers is promoted by lateral segregation of anionic amphiphiles, Biochim. Biophys.Acta, 980:23.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • D. W. Grainger
    • 1
  • M. Ahlers
    • 2
  • R. Blankenburg
    • 2
  • P. Meller
    • 2
  • A. Reichert
    • 2
  • H. Ringsdorf
    • 2
  • C. Salesse
    • 3
  1. 1.Department of Chemical and Biological SciencesOregon Graduate Institute of Science and TechnologyBeavertonUSA
  2. 2.Institut für Organische ChemieUniversität MainzMainzWest Germany
  3. 3.Centre de Recherche en PhotobiophysiqueUniversité QuebecTrois RivieresCanada

Personalised recommendations