Advertisement

Stabilization of Lipid Microstructures: Fundamentals and Applications

  • Alan S. Rudolph
  • Alok Singh
  • Ronald R. Price
  • Beth Goins
  • Bruce P. Gaber
Part of the NATO ASI Series book series (NSSA, volume 199)

Abstract

The thermotropic and lyotropic phase behavior of components that comprise lipid assemblies such as liposomes results in an inherent instability of these structures when exposed to extremes of temperature and hydration. This can present significant limitations to their successful application. As liposomes and other macroassemblies of lipid molecules progress toward application, considerable efforts have been made to improve the stability of these structures. We can define stabilization of lipid microstructures as the ability to withstand chemical, mechanical, or thermal extremes which may be encountered in the variety of applications that are being pursued. In particular, the definition of stabilization for drug delivery and slow release purposes should include increased persistence in the body and avoidance of the reticular endothelial system (RES) which will result in enhanced activity of encapsulants in vivo.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl, P., Singh, A., Price, R., Snuda, J. and Gaber, B.P., 1989, Insertion of bacteriorhodopsin into polymerized diacetylenic phosphatidylcholine bilayers, Biophys.J., 55:321a.Google Scholar
  2. Beissinger, R.L., Farmer, M.C. and Gossage, J.L., 1986, Liposome encapsxil- ated hemoglobin as a red cell surrogate: preparation scale-up, Trans.Am.Soc.Artif.org., 32:58.Google Scholar
  3. Burke, T.G., Singh, A. and Yager, P., 1987, Entrapment of 6-carboxy fluorescein within cylindrical phospholipid microstructures, Ann.N.Y.Acad. Sci.USA, 507:330.CrossRefGoogle Scholar
  4. Burke, T.G., Rudolph, A.S., Sheridan, J.P., Dalziel, A., Singh, A. and Schoen, P.E., 1988, Calorimetric study of novel phase behavior of a phosphatidylcholine containing diacetylenes, Chem. Phys. Lipids, 48:215.CrossRefGoogle Scholar
  5. Carpenter, J.F., Crowe, J.H. and Crowe, L.M., 1988, Stabilization of phos- phofructokinase with sugars during freeze-drying, Biochem. Biophys. Acta, 923:109.CrossRefGoogle Scholar
  6. Crowe, J.H., Crowe, L.M. and Jackson, S.A., 1983, Preservation of structure and functional activity in lyophilized sarcoplasmic reticulum, Arch.Biochem.Biophys. 220:477.CrossRefGoogle Scholar
  7. Crowe, J.H., Crowe, L.M. and Chajxiian, D., 1985, Interaction of carbohydrates with dry dipalmitoyl phosphatidylcholine. Arch.Biochem.Biophys., 236:289.CrossRefGoogle Scholar
  8. Crowe, L.M., Womersley, C., Crowe, J.H., Reid, D., Appel, L. and Rudolph, A.S., 1986, Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates, Biochim.Biophys.Acta, 861:131.CrossRefGoogle Scholar
  9. Crowe, J.H., Crowe, L.M., Carpenter, J.F., Rudolph, A.S., Winstrom, C.A., Spar go, B. and Anchordougy, T.J., 1988, Interactions of sugars with membranes, Biochim.Biophys, Acta, 947:367.CrossRefGoogle Scholar
  10. Kusumi, A., Sing, M., Tirrell, D.A., Oehme, G., Singji, A., Samuel, N.K.P., Ifyde, J.S. and Regen, S.L., 1983, Dynamic and structural properties of polymerized phosphatidylcholine vesicles membranes, J.Amer.Chem. Soc. 105:2975.CrossRefGoogle Scholar
  11. Lee, C.W.B., Waugh, J.S. and Griffin, R.G., 1986, Solid-state NMR study of trehalose/1,2-dipalmitoyl-sn-phosphatidylcholine interactions, Biochem. 25:3737.CrossRefGoogle Scholar
  12. Lee, C.B.W., Das Gupta, S.K., Mattai, J., Shipley, G.G., Abdel-Mageed, A., Makriyannis, A. and Griffin, R.G., 1989, Characterization of the L phase in trehalose stabilized dry membranes by solid-state NMR and x- ray diffraction, Biochm., 28:5000.CrossRefGoogle Scholar
  13. Ligler, F.S., Fare, T.L., Scib, K.D., Smida, J.W., Singji, A., Ayers, M.E., Dalziel, A. and Yager, P., 1988, Fabrication of key components of receptor based biosensor, Med.Inst., 22:247.Google Scholar
  14. O’Brien, D.F., Whitesides, T.H. and Klingbiel, R.T., 1981, The photopoly- merization of lipid-diacetylenes in biomolecular-layer membranes, J.Polym.Sci: Pölym.Letts.Ed., 19:95.Google Scholar
  15. Rhodes, D.G., Blechner, S.L., Yager, P. and Schoen, P.E., 1988, Structure of polymerizable lipid bilayers. I- l,2-bis(10,12-tricosadiynoyl)-sn- glycero-3-phosphocholine, a tubule forming phosphatidylcholine, Chem.Phys.Upids. 49:39.Google Scholar
  16. Rudolph, A.S., 1988, The freeze-dried preservation of liposome encapsulated hemoglobin: a potential blood substitute, Cryobiology, 25:277.CrossRefGoogle Scholar
  17. Rudolph, A.S. and Burke, T.G., 1987, A Fourier-transform infrared spectroscopic study of the polymorphic phase behavior of 1,2 bis(tricosa- 10,12-diynoyl)-sn-3-phosphocholine; a polymerizable lipid which forms novel microstructures, Biochim. Biophys Acta, 902:345.Google Scholar
  18. Rudolph, A.S., Crowe, L.M. and Crowe, J.H., 1986, The effects of three stabilizing agents: proline, betaine, and trehalose on membrane phospholipids, Arch.Biochem.Biophys., 245:134.CrossRefGoogle Scholar
  19. Rudolph, A.S., Schnur, J.M., Singh, A., 1988a, The stabilization of a polymerizable lecithin with carbohydrates, Biophys. J., 53:120a.Google Scholar
  20. Rudolph, A.S., Singh, B.P., Singh, A. and Burke, T.G., 1988b, Phase characteristics of positional isomers of 1,2-bis heptacosadipoyl-sn- glycero-3-phosphocholine; tubule forming phosphatidylcholines, Biochim.Biophys.Acta, 943:454.CrossRefGoogle Scholar
  21. Rudolph, B., Chandrashekar, I., Gaber, B.P. and Nagumo, M., 1990, Molecular modelling of saccharide-lipid interactions, Chem.Phys.Lipids, in press.Google Scholar
  22. Rudolph, A.S., Calvert, J.M., Schoen, P.E. and Schnur, J.M., 1989, Technological development of lipid based tubule microstructures, in: “Technological Applications of Lipid Microstructures”, Advances in Experimental Medicine and Biology Series, vol. 238, B.P. Gaber, J.M. Schnur and D. Chapman, eds., Plenum Press, N.Y.Google Scholar
  23. Schoen, P.E. and Yager, P., 1985, Spectroscopic studies of polymerized surfactants: 1,2-bis (10,12-tricosadiynoyl)-sn glycero-3-phosphocholine, J.Polly.Sci:Polym.Phys.Ed., 23:2203.Google Scholar
  24. Singh, A. and Schnur, J.M., 1985, Polymerized diacetylenic phosphatidylcholine vesicles: synthesis and characterization. Polymer Preprints, 26(2):184.Google Scholar
  25. Singh, A. and Schnur, J.M., 1988, Self-assembled microstructures from a polymerizable ammonium surfactant: Di (Hexacosa-12,14-Diynyl) dimethyl ammonium bromide, J.Chem.Soc.,Chem.Conni., 1222–1223.Google Scholar
  26. Singh, A. and Gaber, B.P., 1988, Influence of short chain lipid spacers on the properties of diacetylenic phosphatidylcholine bilayers, in: “Applied Bioactive Polymeric Materials”, C.G. Gebelein, C.E. Carraher, Jr. and V.R. Foster, eds., Plenum Press, N.Y.Google Scholar
  27. Singh, A., Thompson, R.B. and Schnur, J.M., 1986, Reversible thermochromismin photopolymerized phosphatidylcholine vesicles, J.Amer.Chem.Soc. 108:2785.CrossRefGoogle Scholar
  28. Singh, A., Price, R., Schoen, P.E. Yager, P. and Schnur, J.M., 1986, Tubule formation by heterobifunctional polymerizable lipids: synthesis and characterization. Polymer Preprints, 27(2):393.Google Scholar
  29. Tanford, C., 1981, “The Ifydrophobic Effect”, John Wiley and Sons, N.Y.Google Scholar
  30. Yager, P. and Schoen, P.E., 1984, Formation of tubules by a polymerizable surfactant, Mol.Cryst.Liq.Cryst., 106:371.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Alan S. Rudolph
    • 1
  • Alok Singh
    • 1
  • Ronald R. Price
    • 1
  • Beth Goins
    • 1
  • Bruce P. Gaber
    • 1
  1. 1.Center for Bio/Molecular Science and Engineering, Code 6090Naval Research LaboratoryUSA

Personalised recommendations