Advertisement

Assembly and Secretion of Oligomeric Toxins

  • Timothy R. Hirst
  • Maria Sandkvist
  • Robert Aitken
  • Michael Bagdasarian
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 51)

Abstract

Pathogenic microorganisms produce a myriad of different virulence factors that range in complexity from polymers of simple disaccharides to multimeric protein toxins and adhesins. This structural and functional diversity belies a common biosynthetic requirement shared by all virulence factors: that they must cross the membrane of the bacterium in which they are produced before they can gain access to the host and express their pathogenic properties. The processes of membrane translocation result in either the complete secretion of a pathogenic molecule into the external milieu, eg. extracellular toxins, siderophores etc., or to their assembly onto the bacterial surface, as in the case of adhesins, pili, outer membrane porins, and carbohydrate capsules. In this paper we discuss the mechanisms of protein export and secretion in bacterial cells, and in particular the secretion of complex oligomeric toxins that are responsible for causing cholera and related diarrhoeal diseases.

Keywords

Outer Membrane Cytoplasmic Membrane Membrane Translocation Protein Export Subunit Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wickner W.T. and H.F. Lodish. 1985. Science 230: 400–407.PubMedCrossRefGoogle Scholar
  2. 2.
    Zimmerman R. and D.I. Meyer. 1986. Trends Biochem Science, 11: 512–515.CrossRefGoogle Scholar
  3. 3.
    Hirst T.R. and R.A. Welch. 1988. Trends Biochem Sci. 13: 265–269.PubMedCrossRefGoogle Scholar
  4. 4.
    Randall L.L. and S.J.S. Hardy. Science 243: 1156–1159.Google Scholar
  5. 5.
    Randall L.L., S.J.S. Hardy and J.R. Thom. 1987. Ann Rev Microbiol. 41: 507–541.CrossRefGoogle Scholar
  6. 6.
    Ferenci T. and T.J. Silhavy. 1987. J. Bacteriol. 169: 5339–5342.PubMedGoogle Scholar
  7. 7.
    Gardel, C., S. Benson, J. Hunt, S. Michaelis and J. Beckwith. 1987. J. Bactriol. 169: 1286–1290.Google Scholar
  8. 8.
    Ito, K., M. Wittekind, M. Nomura, K. Shiba, T. Yura, A. Miura and H. Nashimoto. 1983. Cell 32: 789–797.PubMedCrossRefGoogle Scholar
  9. 9.
    Fandl, J.P. and P.C. Tai. 1987. Proc. Natl. Acad. Sci. USA 84: 7448–7452.PubMedCrossRefGoogle Scholar
  10. 10.
    Crooke, E. and W.T. Wickner. 1987. Proc. Natl. Acad. Sci. USA 84: 5216–5220.PubMedCrossRefGoogle Scholar
  11. 11.
    Weiss, J.B., P.H. Ray, and P.J. Bassford. 1988. Proc. Natl. Acad. Sci. USA 85: 8978–8982.PubMedCrossRefGoogle Scholar
  12. 12.
    Eilers, M. and G. Schatz. 1988. Cell 52: 481–483.PubMedCrossRefGoogle Scholar
  13. 13.
    Minsky, A., R.G. Summers RG and J.R. Knowles. 1986. Proc. Natl. Aca. Sci. 83: 4180–4184.CrossRefGoogle Scholar
  14. 14.
    Fitts, R., Reuveny, J. van Amsterdam, J. Mulholland and D. Botstein. 1987. Proc. Natl. Acad. Sci. USA 84: 8540–8543.PubMedCrossRefGoogle Scholar
  15. 15.
    Pohler, J., H. Halter, K. Beyreuther and T.F. Meyer. 1987. Nature (London) 325: 458–462.CrossRefGoogle Scholar
  16. 16.
    Wong, K.R., M.J. Green and J.T. Buckley. 1984. J. Bacteriol. 171: 2523–2527.Google Scholar
  17. 17.
    Hirst, T.R., L.L. Randall and S.J.S. Hardy. 1984. J. Bacteriol. 157: 637–642.PubMedGoogle Scholar
  18. 18.
    Hirst, T.R. and J. Holmgren. 1987. J. Bacteriol. 169: 1037–1045.PubMedGoogle Scholar
  19. 19.
    Gray, G.L., D.H. Smith, J.S. Baldridge, R.N. Harkins, M.L. Vasil, E.Y. Chen and H.L. Heynedker. 1984. Proc. Natl. Acad. Sci. USA 81: 2645–2649.PubMedCrossRefGoogle Scholar
  20. 20.
    Holmgren J. 1981. Nature (London) 292: 413–417.CrossRefGoogle Scholar
  21. 21.
    Mekalanos J.J., D.J. Swartz, G.D.N. Pearson, N. Harford, F. Groyne and M. de Wilde. 1983. Nature (London) 306: 551–557.CrossRefGoogle Scholar
  22. 22.
    Yamamoto, T., T. Tamura and T. Yokota. 1984. J. Biol. Chem. 259: 5037–5044.PubMedGoogle Scholar
  23. 23.
    Leong, J., A.C. Vinal and W.S. Dallas. 1985. Infect. Immun. 48: 73–77.PubMedGoogle Scholar
  24. 24.
    Ito, K. and J.R. Beckwith. 1981. Cell 25: 143–150.PubMedCrossRefGoogle Scholar
  25. 25.
    Strauch, K.L. and J. Beckwith. 1988. Proc. Natl. Acad. Sci. USA 85: 1570–1580.CrossRefGoogle Scholar
  26. 26.
    Hirst, T.R., J. Sanchez, J.B. Kaper, S.J.S. Hardy and J. Holmgren. 1984. Proc. Natl. Acad. Sci. USA 81: 7752–7756.PubMedCrossRefGoogle Scholar
  27. 27.
    Hardy, S.J.S., J. Holmgren, S. Johanasson, J. Sanchez and T.R. Hirst. 1988. Proc. Natl. Acad. Sci. USA 85: 71009–710013.Google Scholar
  28. 28.
    Sandkvist, M., T.R. Hirst and M. Bagdasarian. 1987. J. Bacteriol. 169: 457 0–4576.Google Scholar
  29. 29.
    Hirst, T.R. and J. Holmgren. 1987. Proc. Natl. Acad. Sci. USA 84: 7418–7422.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Timothy R. Hirst
    • 1
  • Maria Sandkvist
    • 2
  • Robert Aitken
    • 1
  • Michael Bagdasarian
    • 2
  1. 1.Department of GeneticsUniversity of LeicesterLeicesterGreat Britain
  2. 2.Michigan Biotechnology InstituteLansingUSA

Personalised recommendations