Characterization and Surface Organization of E. Coli Adhesins

  • Klaus Jann
  • Heinz Hoschützky
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 51)


An important initial step in bacterial infections is the adhesion of the pathogenic bacteria to host cells or tissue. This phenomenon has been studied with intestinally pathogenic as well as with extraintestinal and invasive bacteria. Adhesion is mediated by bacterial recognition proteins, which are termed as adhesins. Since adhesive bacteria also induce agglutination of host red blood cells (RBC), the recognition proteins are also called hemagglutinins (1). They are associated with extracellular structures which may have different appearances in the electron microscope. Some of these extracellular appendages are relatively thick and rigid and others are much thinner, flexible and curly. Both can be demonstrated directly by negative staining procedures. A third group of extracellular adhesive structures can only be visualized after stabilization with specific antibodies and has then a capsule-like appearance. These structures, which are schematized in Fig. 1, are termed as fimbriae (rigid, 5–7 nm diameter), fimbrillae (flexible, 2–3 nm diameter) and nonfimbrial (no fine structure demonstrable). Pending their morphological analysis, the term “nonfimbrial” for the latter structures is only tentative.


Immunoelectron Microscopy Polysaccharide Capsule Extracellular Structure Important Initial Step Immunogold Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duguid, J.P. and Old, D.C. 1980. Bacterial Adherence, E.H. Beachey ed., Capman & Hill, London, 185–217.Google Scholar
  2. 2.
    Leffler, H. and Scanborg-Eden, C. 1980. FEMS Microbiol. Lett. 8:128–134.CrossRefGoogle Scholar
  3. 3.
    Korhonen, T.K., Vaisinen-Rhen, V., Rhen, M., Pere, A., Parkkinen, J., and Finne, J.J. Bacterid. 159:762–766.Google Scholar
  4. 4.
    Vaisanin, V., V., Korhonen, T.K., Jokinen, M., Gahmberg, C.G. and Ehmoholm, C. 1982. Lancet, i, 1192CrossRefGoogle Scholar
  5. 5.
    Ofek, I. and Sharon, N. 1988. Curr. Top. Microbiol. Immunol. 151:91–114.CrossRefGoogle Scholar
  6. 6.
    Jann, K., Jann B., and Schmidt, G. 1981. FEMS Microbiol. Lett. 11:21–25.CrossRefGoogle Scholar
  7. 7.
    Minion, F.C., Abraham, S.N., Beachey, E.H., and Goguen, J.D. 1986. J. Bacterid. 165:1033–1036.Google Scholar
  8. 8.
    Lund, B., Lindberg, F.P., Baga, M., and Normak, S. 1985. J. Bacterid. 162:1293–1301.Google Scholar
  9. 9.
    Lindberg, F.P., Lund, B., and Normak, S. 1986. Proc. Natl. Acad. Sci. USA 83:1891–1985.PubMedCrossRefGoogle Scholar
  10. 10.
    vanDie I., Zuidweg, E., Hoekstra, W., and Bergmans, H. 1986. Microbiol. Pathog. 1:51–56.CrossRefGoogle Scholar
  11. 11.
    Hacker, J., Schmidt, G., Hughes, C., Knapp, S., Marget, M., and Goebel, W. 1985. Infect. Immun. 47:434–440.PubMedGoogle Scholar
  12. 12.
    Moch, T., Hoschutzky, H., Hacker, J., Kroncke, K.-D., and Jann, K. 1987. Proc. Natl. Acad. Sci. USA 84:4362–3466.CrossRefGoogle Scholar
  13. 12a.
    Schmoll, T., Hoschutzky, H., Morschhause, J., Lottspeich, F., Jann, K., and Hacker, J. 1989. Mol. Microbiol. 3:1735–1744.PubMedCrossRefGoogle Scholar
  14. 13.
    Hoschutzky, H., Lottspeich, F., and Jann, K. 1989. Infect. Immun. 57:76–81.PubMedGoogle Scholar
  15. 14.
    Lund, B., Lindberg, F.P., Marklund, B.I., and Normak, S. 1987. Proc. Natl. Acad. Sci. USA 84:5898–5902.PubMedCrossRefGoogle Scholar
  16. 15.
    Linder, H., Engberg, I., Matzby Baltzer, I., Jann, K., and Svanborg-Eden, C. 1988. Infect. Immun. 56:1309–1313.PubMedGoogle Scholar
  17. 16.
    Orskov, I., Birch-Andersen, A., Duguid, J.P., Stenderup, J., and Orskov, F. 1985. Infect. Immun. 47:191–200.PubMedGoogle Scholar
  18. 17.
    Forestier, C., Welinder, K.G., Darfeuille-Michaud, A., and Klemm, P. 1987. FEMS Microbiol. Lett. 40:47–50.CrossRefGoogle Scholar
  19. 18.
    Williams, P.H., Knutton, S., Brown, M.G.M., Candy, D.A.C., and McNeish, A.S. 1984. Infect. Immun. 44:592–598.PubMedGoogle Scholar
  20. 19.
    Knutton, S., Lloyd, D.R., and McNeish, A.S. 1987. Infect. Immun. 55:86–92.PubMedGoogle Scholar
  21. 20.
    Walz, W., Schmidt, A., Labigne-roussel, A.F., Falkow, S., and Schoolnik, G. 1985. Eur. J.Biochem. 152:315–321.PubMedCrossRefGoogle Scholar
  22. 21.
    Goldhar, J., Parry, R., Golecki, J.R., Hoschutzky, H., Jann, B., and Jann, K. 1987. Infect. Immun. 55:1837–1842.PubMedGoogle Scholar
  23. 22.
    Grunberg, J., Perry, R., Hoschutzdy, H., Jann, B., Jann, K., and Goldhar, J. 1988. FEMS Michrobiol. Lett. 56: 241–246.CrossRefGoogle Scholar
  24. 23.
    Hoschutzdy, H., Nimmich, W., Lottspeich, F., and Jann, K. 1989. Microbiol. Pathog. 6:351–359.CrossRefGoogle Scholar
  25. 24.
    Kroncke, K.D., Orskov, I., Orskov, F., Jann, B. and Jann, K. Infect. Immun. 58:2710–2714.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Klaus Jann
    • 1
  • Heinz Hoschützky
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburgGermany

Personalised recommendations