Advertisement

Crystalline Silicon as a Material for Solar Cells

  • M. Rodot

Abstract

As a material for solar cells, hyperpure single crystalline silicon is progressively replaced by less pure, poly crystalline materials. The various techniques of silicon purification and of ingot, ribbon and sheet growth are reviewed. The physical effects of impurities as well as those of grain boundaries and other crystalline defects are discussed, in order to define the material requirements to obtain efficient solar cells; it is shown that grain boundaries can getter impurities and that impurities can passivate grain boundaries, so that more impure and imperfect crystals, i.e. cheaper materials than presently used, can be envisaged in future. From a detailed comparison of the various proposed techniques, it is concluded that the present “chemical route” consisting of halogenide purification and ingot growth may be challenged soon by a “metallurgical route” in which the active layer is epitaxially grown on a wafer recrystallized from upgraded metallurgical grade silicon.

Keywords

Solar Cell Ribbon Thickness Minority Carrier Diffusion Length Back Surface Field IEEE Photovoltaic Spec 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. M. Chapin; C. J. Fuller; and G. L. Pearson. 1961.J. Appl. Phys. 252:246.Google Scholar
  2. 2.
    J. Lindmayer and J. F. Allison. 1972. 9th. IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 83.Google Scholar
  3. 3.
    J. R. McCormick. 1980. I4th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 298.Google Scholar
  4. 4.
    G. M. Storti. 1981.15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 442.Google Scholar
  5. 5.
    J. Grenier. Private communication. These figures are prices, and not costs; the 1985 figure is typical of the upper limit of European expectations and may be considered as conservative. However, U.S. Department of Energy expectations for 1982 ($6 to 13/W system price, including $2.80/W module price) have not been confirmed in practice.Google Scholar
  6. 6.
    W. Freiesleben. 1981. 3rd Photovoltaic Solar Energy Conf. Dordrecht: Reidel, 166.Google Scholar
  7. 7.
    According to Y. Hamakawa. 1981. J Photovoltaic Solar Energy Conf. Dordrecht: Reidel, 22, solar cell production may reach 50 MW in 1985 and 3000 MW in 1990.Google Scholar
  8. 8.
    S. Pizzini. 1982. Solar Energy Mat. 6:253.Google Scholar
  9. 9.
    J. Dietl; D. Helmreich; and E. Sirtl. 1981. Crystals: growth, properties and applications. Vol. 5. Berlin: Springer-Verlag, 43.Google Scholar
  10. 10.
    E. Bucher. Appl. Phys. 17:1.Google Scholar
  11. 11.
    Alternative processes have been proposed, but are not in use: the aluminothermic treatment of SiOs (E. Vigouroux. 1899. C. R. Acad. Sei. 129:334) and the electrolysis of fluosilicates (R. Boen and J. Bouteillon. 1978. 1st Photovoltaic Solar Energy Conf. Dordrecht: Reidel, 860. D. Elwell and R. S. Feigelson. 1982. Solar Energy Mat. 6:123).Google Scholar
  12. 12.
    L. P. Hunt. 1975. 11th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 259; J. Amouroux; P. Fauchais; D. Morvan; D. Rocher. 1979. Ann. Chim. 4:231.Google Scholar
  13. 13.
    R. Lutwack. 1981. 3rd. Photovoltaic Solar Energy Conf. Dordrecht: Reidel, 220.Google Scholar
  14. 14.
    The energy consumption is also reduced. This was imperative to obtain valuable solar cells. Using electronic grade Si, the energy payback time is 12 yrs, which is unacceptable. Although not exactly known, the corresponding figure for solar grade Si should be no more than 3 yrs, and perhaps.5 yr. See L. P. Hunt. 1976. I2th IEEE Photovoltaic Spec. Conf Proc. New York: IEEE.Google Scholar
  15. 15.
    See e.g., M. C. Flemings. 1974. Solidification processing. New York: McGraw-Hill; B. Chalmers. 1964. Principles of solidification. New York: J. Wiley; J. C. Brice. 1973. The growth of crystals from liquids. Amsterdam: North Holland.Google Scholar
  16. 16.
    See, however, C. P. Khattak; F. Schmid; and L. P. Hunt. 1980. Comm. to the Electrochem. Soc. St. Louis, May 1980, who obtained 12.3% efficiency after a simple Heat-Exchanger Method growth of silicon produced by Submerged Electrode Arc Furnace. Best efficiency was only 7.2% for HEM growth of MG silicon (F. Schmid; M. Basaban; and C. P. Khattak. 1981. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 252); 8.5% for CZ growth of MG silicon (J. I. Hanoka; H. E. Strock; and P. S. Kotval. 1978. 13th Photovoltaic Spec. Conf. Proc. New York; IEEE, 485).Google Scholar
  17. 17.
    H. J. Hovel. 1975. “Solar cells.” In Semiconductors and semimetals. Vol. 3. New York: Academic Press.Google Scholar
  18. 18.
    R. C. Neville. 1978. Solar energy conversion: the solar cell. Elsevier.Google Scholar
  19. 19.
    A. Laugier and A. J. Roger. 1981. Photopiles solair es. Technique et documentation.Google Scholar
  20. 20.
    S. J. Fonash. 1980. “Photovoltaic devices.” Critical reviews in solid state and materials sciences 110.Google Scholar
  21. 21.
    J. R. Davis; A. Rohatgi; R. H. Hopkins; P. D. Blais; P. Rai-Choudhury; J. R. McCormick; and H. C. Mollenkopf. 1980. IEEE Trans. Electron Dev. ED 27:677.Google Scholar
  22. 22.
    G. M. Storti; S. M. Johnson; H. C. Lin; C. D. Wang; 14th IEEE Photovoltaic Spec. Conf. Proc.New York: IEEE, 191.Google Scholar
  23. 23.
    J. M. Reynolds and A. Meulenberg Jr. 1974. J. Appl. Phys. 45:2582; S. Othmer and S. C. Chen. 1980. 13th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 1238. The latter paper shows how the presence of long-lived traps may affect the interpretation of photoconductivity measurements in terms of lifetime.Google Scholar
  24. 24.
    T. L. Chu and E. D. Stokes. 1980. 13th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 95.Google Scholar
  25. 25.
    The use of EBIC technique is described by J. I. Hanoka and R. O. Bell. 1980. Ann. Rev. Mater. Sei. 11:353 and that of LBIC by D. L. Lile and N. M. Davis. 1975. Solid State Electron 80:699 and also B. L. Sopori and A. Baghdadi. 1979. Solar Cells 1:237.Google Scholar
  26. 26.
    F. A. Trumbore. 1960. Bell Syst. Tech. J. 39:205.Google Scholar
  27. 27.
    K. A. Jackson and M. J. Leamy. 1978. AIP Proc. Conf. on Laser Solid Interaction and Laser Processing. Edited by S. D. Ferris; M. J. Leamy; and J. M. Poate. Boston, 102; C. W. White; J. Narayan; and R. T. Young.Ibid. 275; R. Stuck; E. Fogarassy; J. C. Muller; A. Grob; J. J. Grob; and P. Siffert. 1979. “Laser and electron beam processing of materials.” Materials Research Soc. Symp. Los Angeles.Google Scholar
  28. 28.
    W. Frank; V. Gösele; and A. Seeger. 1978. Inst. Phys. Conf Ser. 46:514.Google Scholar
  29. 29.
    H. Feichtinger. 1978. Inst. Phys. Conf Ser. 46:528Google Scholar
  30. E. Weber and H. G. Riotte. 1980. J. Appl. Phys. 51:1484.Google Scholar
  31. 31.
    P. Capper; A. W. Jones; E. J. Wellhouse; and J. G. Wilkes. 1977. J. Appl. Phys. 48:1646.Google Scholar
  32. 32.
    G. A. Rozgony and C. W. Pearce. 1978.Appl. Phys. Letters 37:747.Google Scholar
  33. 33.
    K. Wunstel and P. Wagner. 1982.Appl. Phys. A 27:207.Google Scholar
  34. 34.
    B. I. Boltaks. 1963. Diffusion and point defects in semiconductors. London: InforsearchGoogle Scholar
  35. D. Shaw Atomic diffusion in semiconductors. London: Plenum, 1973.Google Scholar
  36. 36.
    A. Seegerand., K. P. Chik. 1968. Phys. Stat. Sol. 29:455.Google Scholar
  37. 37.
    H. Wolf. 1969. Silicon semiconductor data. New York. Pergamon.Google Scholar
  38. 38.
    J. D. Gerson; L. J. Cheng; and J. W. Corbett. 1977.J. Appl. Phys. 48:4821.Google Scholar
  39. 39.
    H. G. Grimmeiss. 1977. Ann. Rev. Mater. Sei. 7:341 gives a description of DLTS measurements and some results on capture coefficients, Cp. The relation between lifetime and the coefficients Cn, Cp is discussed by H. J. Queisser. 1978. Solid State Electron 21:1495.Google Scholar
  40. 40.
    S. Pizzini; L. Giarda; A. Parisi; A. Somi; and G. Soncini. 1980. 15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 902.Google Scholar
  41. 41.
    A. Rohatgi; J. R. Davis; R. H. Hopkins; P. Rai- Choudhury; P. G. McMullin; and J. R. McCormick. 1980. Solid State Electr. 23:415.Google Scholar
  42. 42.
    A. Rohatgi; R. B. Campbell; J. R. Davis; R. H. Hopkins; P. Rai-Choudhury; H. Mollenkopf; and J. R. McCormick. 1980. 14th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 908.Google Scholar
  43. 43.
    W. Shockley. 1949. Bell Syst. Tech. J. 28:435Google Scholar
  44. J. E. Lawrence. 1965. J. Electr. Chem. Soc. 112: 796.Google Scholar
  45. 45.
    A. M. Salama. 1978. 13th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 496.Google Scholar
  46. 46.
    R. B. Campbell; M. H. Hanes; R. H. Hopkins; A. Rohatgi; P. Rai-Choudhury; and H. C. Mollenkopf. 1981. 15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 530.Google Scholar
  47. 47.
    T. Figielski. 1978. Solid State Electron. 21:1403.Google Scholar
  48. 48.
    H. C. Card; E. S. Yang. 1977. IEEE Trans, on Electron Devices. ED 24:397.Google Scholar
  49. 49.
    L. L. Kazmerski. 1978. Solid State Electron 21:1545.Google Scholar
  50. 50.
    A. G. Ghosh; C. Fishman; and T. Feng. 1980. J. Appl. Phys. 51:446.Google Scholar
  51. 51.
    M. Zehaf; H. Amzil; J. P. Crest; G. Mathian; S. Martinuzzi; J. Oualid. 1982. “Comm. Electrochem. Soc. Conf.” Montreal. To be published.Google Scholar
  52. 52.
    K. M. Koliwad; T. Daud; and J. K. Liu. 1919. 2nd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 710Google Scholar
  53. K. M. Koliwad and T. Daud. 1980. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 1204.Google Scholar
  54. 54.
    J. G. Fossum; A. Neugroschel; F. A. Lindholm; and J. A. Mazer. 1980. 14th Photovoltaic Spec. Conf Proc. New York: IEEE, 184.Google Scholar
  55. 55.
    B. L. Sopori. 1981. “Comm. intern, workshop on the physics of semiconductor devices (Delhi).Google Scholar
  56. 56.
    D. Helmreich and H. Seiter. 2nd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 742.Google Scholar
  57. 57.
    R. Bullough and R. C. Newman. 1963. Progr. in Semicond. Vol. 7. Edited by A. F. Gibson and R. E. Burgess. New York: John Wiley.Google Scholar
  58. 58.
    J. J. Aubert; J. J. Bacmann; A. Bourret; J. Daval; J. Dessaux; and A. Rocher. 1980. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 589.Google Scholar
  59. 59.
    L. L. Kazmerski; P. J. Ireland; and T. F. Ciszek. 1980.J. Vacuum Sei. Technol. 17:34.Google Scholar
  60. 60.
    T. L. Chu; S. S. Chu; L. L. Kazmerski; R. Whitney; C. L. Lin; and R. M. Davis. Solar Cells 5:29.Google Scholar
  61. 61.
    R. G. Rosemeier; R. W. Armstrong; S. M. Johnson; G. M. Storti; and C. C. Wu. 1981.15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 1331.Google Scholar
  62. 62.
    G. M. Storti; S. M. Johnson; H. C. Lin; and C. D. Wang. 1980. 14th IEEE Photovoltaic Spec. Conf Proc. New York: IEEE, 191.Google Scholar
  63. 63.
    D. Redfield. 1981. 15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 1179. In this paper it is concluded that the crystal disorientations play only a minor role, if any, on the electrical activity of grain boundaries.Google Scholar
  64. 64.
    J. C. C. Fan; T. F. Deutsch; G. W. Turner; D. J. Ehrlich; R. L. Chapman; and R. M. Osgood Jr. 15th Photovoltaic Spec. Conf. Proc. 1981. New York: IEEE, 432Google Scholar
  65. 65.
    G. B. Turner; D. Tarrant; D. Aldrich; R. Pressley; and R. Press. 1982. 4th Photovoltaic Solar Energy Conf. Dordrecht: Reidel to be published, both propose laser- induced annealing of a silicon wafer in contact with a doping gas. It is interesting to note that Turner observed a passivation of grain boundaries in a SILSO wafer, by this technique.Google Scholar
  66. 66.
    C. H. Seager and D. S. Ginley. 1979.Appl. Phys. Lett. 34:337.Google Scholar
  67. 67.
    J. I. Pankove; M. A. Lampert; and M. L. Tamg. 1978.Appl. Phys. Lett. 32:439.Google Scholar
  68. C. H. Seager; D. S. Ginley; and J. D. Zook. 1980. Appl. Phys. Lett. 36:831Google Scholar
  69. 69.
    J. Mimila-Arroyo; F. Duehas- Santos; and J. L. Delvalle. 1981.15th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 259Google Scholar
  70. 70.
    P. H. Robinson and R. V. D’Aiello. 1981. Appl. Phys. Lett. 39:63.Google Scholar
  71. 71.
    T. H. Di Stefano and J. J. Cuomo. 1977. Appl. Phys. Letters 30:351.Google Scholar
  72. 72.
    W. A. Orr and F. P. Califano. 1980. 14th IEEE Photovoltaic Spec. Conf. Proc. New York: IEEE, 1198Google Scholar
  73. F. Ferraris; F. C. Matacotta; S. Pidatella; and L. Sardi. 1980. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 625.Google Scholar
  74. 74.
    R. Janssens; R. Mertens; and R. Van Overstraeten. 1980. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 620.Google Scholar
  75. 75.
    E. Sirtl. 1979. 2nd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 84.Google Scholar
  76. 76.
    E. Sirtl; L. P. Hunt; and R. Sawyer. 1974. J. Electrochem. Soc. 121:919.Google Scholar
  77. 77.
    W. C. Breneman; E.G. Farrier; and H. Morihara. 1978. 13th Photovoltaic Spec. Conf Proc. New York: IEEE, 339.Google Scholar
  78. 78.
    R. Lay and S. K. lya. 1978. 15th Photovoltaic Spec. Conf. Proc. New York: IEEE, 565.Google Scholar
  79. 79.
    S. J. Solomon. 1978. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 569.Google Scholar
  80. 80.
    W. H. Reed; R. N. Meyer; M. G. Fey; F. J. Harvey; and F. G. Arcella. 1978. 13th Photovoltaic Spec. Conf. Proc. New York: IEEE, 370.Google Scholar
  81. 81.
    V. D. Dosaj, L. P. Hunt; and A. Schei. 1978. J. Metals 30:8.Google Scholar
  82. 82.
    T. F. Ciszek; M. Schietzelt; L. L. Kazmerski; J. L. Hurd; and B. Fernelius. 1981. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 581.Google Scholar
  83. 83.
    F. Secco d’Aragona; H. M. Liaw, and D. M. Heminger. 1981. Proc. Symp. on Materials and New Processing Techn. for Photovoltaics. Princeton: Electrochem. Soc., 119.Google Scholar
  84. 84.
    T. L. Chu; S. S. Chu; E. D. Stokes; C. L. Lin; and R. Abderrassoul. 1979. 13th Photovoltaic Spec. Conf Proc. New York: IEEE, 1106Google Scholar
  85. T. L. Chu. 1979–1980. Solar Energy Mat. 2:265.Google Scholar
  86. 86.
    P. H. Robinson; R. V. D’Aiello; and D. Richman. 1980. 14th Photovoltaic Spec. Conf Proc. New York: IEEE, 54Google Scholar
  87. J. I. Hanoka; H. B. Strock; and P. S. Kotval. 1981. J. Appl. Phys. 52:5829.Google Scholar
  88. 88.
    T. Warabisako; T. Saitoh; E. Kuroda; H. Itoh; N. Nakamura; and T. Tokuyama. 1980. Jap. J. Appl. Phys. 19 (suppl. 1): 538.Google Scholar
  89. 89.
    R. G. Wolfson and R. G. Little. 1981.15th Photovoltaic Spec. Conf Proc. New York: IEEE, 595.Google Scholar
  90. 90.
    D. T. J. Hurle. 1961. Solid State Electronics 3:37Google Scholar
  91. W. A. Tiller. 1963. In The art and science of growing crystals. New York: J. Wiley. Constitutional supercooling is also associated with a “cellular growth” of Si crystals which gives them an irregular, “lamellar” aspect. Such a material is improper for solar cell production.Google Scholar
  92. 92.
    C. S. EHincan; R. G. Seidensticker; J. P. McHugh; R. H. Hopkins; M. E. Skutch; J. M. Driggers; and F. E. Hill. 1980. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 25Google Scholar
  93. R. G. Seidensticker and R. H. Hopkins. 1980. J. Crystal Growth 50:221.Google Scholar
  94. 94.
    D. Morvan; J. Amouroux; and G. Revel. 1980. Rev. Phys. Appl. 15:1229.Google Scholar
  95. 95.
    K. M. Koliwad and M. H. Leipold. 1981. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 228.Google Scholar
  96. 96.
    T. F. Ciszek; G. H. Schwuttke; and K. H. Yang. 1979.J. Crystal Growth 46:527.Google Scholar
  97. 97.
    F. Schmid. 1976. 12th Photovoltaic Spec. Conf. Proc. New York: IEEE, 146Google Scholar
  98. C. P. Khattak and F. Schmid. 1978. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 484.Google Scholar
  99. 99.
    Bridgman growth is a long-used technique to get Si poly crystals. It seems to be used for the so-called SEMIX material for solar cells. See J. Lindmayer, Z.C. Putney. 1978. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 208. A similar technique is used byGoogle Scholar
  100. 100.
    J. Fally and C. Guenel. 1981. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 598. The conditions of crystal growth are not very explicit in these papers.Google Scholar
  101. 101.
    D. Helmreich. Proc. Symp. Electr. and Opt. Prop, of Polycrystalline or Impure Semiconductors and Novel Silicon Growth Methods. 1980. Edited by Ravi and O’Hara. The Electrochem. Soc., 184.Google Scholar
  102. 102.
    H. Rodot; P. Cassagne; and M. Hamidi. 1981. J. Electronic Mat. 10:481.Google Scholar
  103. 103.
    D. Casenave; R. Gauthier; L. Vandekerkove; and P. Pinard. 1982. Appl. Phys. Lett. 40:698. The thermal equilibrium is described by the same authors in Solar Cells 5:367 (1982) and the purifying effect in Solar Energy Mat. 5:417 (1981).Google Scholar
  104. 104.
    As an example of exact treatment of the heat transport problem, see e.g., the work of J. D. Zook and S. B. Schyldt. 1980. J. Crystal Growth 50:51.Google Scholar
  105. 105.
    The growth angle of Si,, has been measured by several experimenters. Values between 8 and 12 have been found by T. Surek; S. R. Coriell; and B. Chalmers. 1980. J. Crystal Growth 50:21. By a new technique, M. Hamidi and H. Rodot Rev. Phys. Appl. (to be published) found 11° for (100) and (111) monocrystals and 8- l(f for polycrystals. The crystal shape stability in the case of Czochralski growth, zone-floating and meniscus- controlled ribbon growth is discussed in the former paper by T. Surek, et al.Google Scholar
  106. 106.
    See e.g., a good discussion of stresses in RTR ribbons, by R. W. Gürtler. 1980. J. Crystal Growth 50:69. Post-heating of the crystal was found to be important in this case, and also for the RFP ribbons (see D. Casenave88) and other techniques.Google Scholar
  107. 107.
    K. A. Dumas; C. P. Khattak; and F. Schmid. 1981. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 954.Google Scholar
  108. 108.
    F. Schmid and C. P. Khattak. Optical Spectra (May 1981).Google Scholar
  109. 109.
    S. M. Johnson; G. M. Storti; R. W. Armstrong; R. G. Rosemeier; M. E. Taylor; and W. F. Regnault. 1981. I5th Photovoltaic Spec. Conf Proc. New York: IEEE, 949.Google Scholar
  110. 110.
    B. Authier. 1978. Adv. Solid State Phys. 18:1.Google Scholar
  111. 111.
    H. Yoo; P. Iies, D. Tanner; G. Pollock; and F. Uno. 1981. 15th Photovoltaic Spec. Conf. Proc. New York: IEEE, 312.Google Scholar
  112. 112.
    B. Kudo. 1980. J. Crystal Growth 50:247Google Scholar
  113. D. W. Jewett and H. E. Bates. 1980. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 1404. The first suggestion of HRG technique is fromGoogle Scholar
  114. C. E. Bleü. 1969. J. Cryst. Growth 5:99.Google Scholar
  115. 115.
    K. R. Sarma; R. N. Legge; and R. W. Gürtler. 1980. J. Electron. Mat. 9:841.Google Scholar
  116. 116.
    A. Baghdadi and R. W. Gürtler. 1980. J. Crystal Growth 50:236.Google Scholar
  117. 117.
    B. L. Sopori. 1981.J. Electronic Mat. 10:517.Google Scholar
  118. 118.
    D. L. Barrett; D. R. Hamilton; and E. H. Meyers. 1971. J. Electrochem. Soc. 118:952.Google Scholar
  119. 119.
    J. L. Hurd and T. F. Ciszek. J. Crystal Growth. To be published.Google Scholar
  120. 120.
    The Stepanov method was originally described by A.V. Stepanov. 1959. Zh. Tekh. Fiz. 29:382, and used for Si later on: L. M. Zatulovskii and P. M. Chaikin 1969. Izv. Akad. Nauk SSSR, Ser. Fiz. 33:1998. The introduction of a wettable die gave birth to the EEG process, first published by H. E. La Belle and A. I. Mlavsky. 1971.Mater. Res. Bull. 6:581, and fully described by T. Surek; B. Chalmers; and A. I. Mlavsky. 1977. J. Cryst. Growth 42:453; K. V. Ravi. XSHl.Ibid. 39:1; F. V. Wald. In Crystals: growth, properties and applications. Vol. 5. 1981. Berlin: Springer-Verlag, 149. CAST (Capillary Action Shaping Technique) is very similar to EEG. See T. F. Ciszek and G. H. Schwuttke. 1975. Phys. Stat. Sol. a, 27: 231. The inverted Stepanov, or PDG (Pending Droplet Growth), technique is a variant described by K. M. Kim; S. Berkman; H. E. Temple; and G. W. Cullen. 1980. J. Crystal Growth 50:212, and J. Ricard. 1978. 1st Photovoltaic Solar Energy Conf Dordrecht: D. Reidel, 882.Google Scholar
  121. 121.
    F. V. Wald. 1981. In Crystals: growth, properties and applications. Vol. 5. Berlin: Springer-Verlag.Google Scholar
  122. 122.
    A. S. Taylor; R. W. Stormont; C. C. Chao; and E. J. Henderson. 1981. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 589.Google Scholar
  123. 123.
    J. P. Kalejs and F. V. Wald (Tyco C). Private communication.Google Scholar
  124. 124.
    C. V. H. N. Rao; M. C. Cretella; F. V. Wald; and K. V. Ravi. 1980.J. Crystal Growth 50:311.Google Scholar
  125. 125.
    K. V. Ravi; R. C. Gonsiorawski; A. R. Chaudhuri; C. V. Hari Rao; C. T. Ho; J. I. Hanoka; and B. R. Bathey. 1981. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 928.Google Scholar
  126. 126.
    J. Ricard (Pechiney). Private communication.Google Scholar
  127. 127.
    K. I. Arai; N. Tsuya; and T. Takeuchi. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 31.Google Scholar
  128. 128.
    M. S. Alaee and T. Hashem. 1978. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 584.Google Scholar
  129. 129.
    R. Suryanarayanan and G. Zribi. “Comm. int. conf. on polycrystalline semiconductors.” Sept. 1982, Perpignan. J. Phys. 43:Cl-375.Google Scholar
  130. 130.
    J. D. Zook; B. G. Koepke; B. L. Grund; and M.H. Leipold. 1980. J. Crystal Growth 50:26Google Scholar
  131. S. B. Schuldt; J. D. Heaps; F. M. Schmit; J. D. Zook; and B. L. Grung. 1981. I5th Photovolt. Spec. Conf Proc. New York: IEEE, 934.Google Scholar
  132. 132.
    According to J. D. Zook. 1981. 3rd Photovoltaic Solar Energy Conf. 1981. Dordrecht: D. Reidel 589, a diffusion length of 39 um has been found within a grain, while the grain-boundary recombination velocity was s = 105 cm/s.Google Scholar
  133. 133.
    C. Belouet; J. J. Brissot; R. Martres; and Ngo-Tich Phuoc. 1977. 1st Photovolt. Spec. Conf Dordrecht: D. Reidel, 164Google Scholar
  134. C. Belouet. 1980. J. Crystal Growth 50:279Google Scholar
  135. C. Belouet; J. Schneider; C. Belin; C. Texier; and R. Martres. 1980. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 49.Google Scholar
  136. 136.
    C. Belouet; C. Belin; J. Schneider, and J. Paulin. 3rd Photovoltaic Solar Energy Conf. Amsterdam: D. Reidel, 558.Google Scholar
  137. 137.
    C. Texier-Hervo; M. Mautref; and C. Belouet. 1982. 4th Photovoltaic Solar Energy Conf. To be published.Google Scholar
  138. 138.
    Gettering by POCI3 (a glass used for n-doping) is described by A. Rohatgi; R. B. Campbell; J. R. Davis; R. H. Hopkins; P. Rai-Choudury; H. Mollenkopf; and J. R. McCormick. 1980. 14th Photovoltaic Spec. Conf. Proc. New York: IEEE, 908; annealing for 1 h at llOOPC is found to have no effect on Mo, a partial effect on Ti (which is removed on about 20 /xm thickness), a complete removing action on Fe. T. Saitoh; T. Warabisako; E. Kurado; H. Itoh; S. Matsubara; and T. Tokuyama. Ibid. 912, improve by more than 50% the efficiency of solar cells made from MG-Si, by grinding the wafer back surface and subsequent annealing (damage gettering). T. C. Chu and R. G. Wolfson anneal the substrate with HCl + H2, before the CVD deposition.Google Scholar
  139. 139.
    H. I. Yoo; P. A. lies; D. C. Leung; and S. Hyland. 1981. 15th Photovoltaic Spec. Conf Proc. New York: IEEE, 598.Google Scholar
  140. 140.
    These solid phases may be CVD-grown oxides, sprayed-on layers on screen-printable pastes. Title use of screen printing for this step, as well as for metallization, has been proposed by L. Frisson; M. Honore; R. Mertens; R. Govaerts; and R. Van Overstraeten. 1980. 14th Photovoltaic Spec. Conf Proc. New York: IEEE, 941.Google Scholar
  141. 141.
    See papers by P. Siffert and by E. Fabre, to be published in 4th Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel.Google Scholar
  142. 142.
    J. Michel; C. Fages; J. C. Muller; P. Siffert; D. Hoonhout; T. de Jong; and F. W. Saris. 1981. 3rd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 713 have compared implantation and glow discharge. E. Fogarassy; R. Stuck; J. C. Muller; M. Hodeau; A. Wattiaux; M. Toulemonde; and P. Siffert. Ibid., 639 have compared the methods using a deposited solid.Google Scholar
  143. 143.
    See numerous references in Laser and electron beam processing of electronic materials. 1979. Vol. 80–1. Proc. Conf. Los Angeles: The Electro- chem. Soc., and also Laser and electron beam processing of materials. 1980. New York: Academic Press.Google Scholar
  144. 144.
    H. Goldman and M. Wolf. 1980. 14th Photovoltaic Spec. Conf Proc. New York: IEEE, 923.Google Scholar
  145. 145.
    R. O. Bell; C. T. Ho; K. V. Ravi; F. V. Wald; J. C. Muller; and P. Siffert. 1979. 2nd Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 153.Google Scholar
  146. 146.
    E. Fogarassy; R. Stuck; J. J. and A. Grob; and P. Siffert. 1980. In Laser and electron beam processing of materials. New York: Academic Press, 117.Google Scholar
  147. 147.
    R. Chabbal and M. Rodot. 1977.1st Photovoltaic Solar Energy Conf. Dordrecht: D. Reidel, 29.Google Scholar
  148. 148.
    Solar photovoltaic energy conversion. 1979. American Physical Society report of a study group headed by H. Ehrenreich.Google Scholar
  149. 149.
    Shaped crystal growth in J. Crystal Growth 50 (1980).Google Scholar
  150. 150.
    E. Fabre; C. Belouet, 3rd Photovoltaic Solar Energy Conf.(Dordrecht: D. Reidel, 1981) 244.Google Scholar
  151. Simonocrystals have been grown by Czochralski technique for three decades. Recent developments are presented by G. Fiegl, A. C. Bonora, 14th Photovoltaic Spec. Conf Proc. (IEEE, New York 1978) 303Google Scholar
  152. G. Ficgl, 3rd Photovoltaic Solar Energy Conf (Dordrecht: D. Reidel, 1981) 209.Google Scholar
  153. 153.
    J. A. Van Vechten. 1980. Handbook on semiconductors. Vol. 3. Edited by T. S. Moss, S. Keller. North Holland, 1.Google Scholar
  154. 154.
    A. R. Bean and R. C. Newman. 1971.J. Phys. Chemical Solids 32:1211.Google Scholar
  155. 155.
    C. P. Khattak; M. Basaran; F. Schmid; R. V. D’Aiello; P. H. Robinson; and A. H. Firester. 1981. 15th Photovoltaic Spec. Conf. Proc. New York: IEEE, 1432.Google Scholar
  156. 156.
    V. P. Boldyrev; I. I. Pokrovski; S. G. Romanov- skaia; A. V. Tkatch; and I. E. Chimanovitch. Sni.Fiz. Tekh. Poluprovod. 11:1199.Google Scholar
  157. 157.
    A. Baghdadi; R. W. Gürtler; R. N. Legge; R. J. Ellis; and B. L. Sopori. 1978. 13th Photovoltaic Spec. Conf Proc. New York: IEEE, 363.Google Scholar
  158. 158.
    B. L. Sopori. 1981. Proc. Symp. on Electronic and Optical Properties of Poly crystalline and Impure Silicon. Electrochem. Soc., 66.Google Scholar
  159. 159.
    J. H. Aalbrets and M. L. Verheijke. 1962.Appl. Phys. letters 1:19.Google Scholar
  160. 160.
    W. P. Wilcox and T. J. La Chapelle. 1964.J. Appl. Phys. 35:240.Google Scholar
  161. 161.
    L. C. Kimerling; J. L. Benton; and J. J. Rubin.1981. Inst. Phys. Conf Ser. 5:217.Google Scholar

Copyright information

© American Solar Energy Society, Inc. 1983

Authors and Affiliations

  • M. Rodot
    • 1
  1. 1.Centre National de la Recherche ScientifiqueMeudonFrance

Personalised recommendations