The Input and Mineralization of Organic Carbon in Anaerobic Aquatic Sediments

  • David B. Nedwell
Part of the Advances in Microbial Ecology book series (AMIE, volume 7)


The bottom sediments in both marine and freshwater ecosystems are important sites of mineralization and nutrient recycling, particularly where there is shallow water together with high productivity so that there is rapid input of organic carbon to the sediment. In most coastal and intertidal areas and in eutrophic lakes, productivity is relatively high and detrital input to the bottom sediments is appreciable, with the result that much of the sediments in these regions is anaerobic and reduced, apart perhaps from a thin aerobic surface layer. Therefore, at least potentially, a considerable portion of the organic carbon mineralization in these aquatic ecosystems may go on in the sediment under anaerobic rather than aerobic conditions.


Organic Carbon Bottom Sediment Marine Sediment Sulfate Reduction Dissolve Organic Material 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abd. Aziz, S. A., and Nedwell, D. B., 1979, Microbial nitrogen transformations in the saltmarsh environment, in: Ecological Processes in the Coastal Environment (R. L. Jefferies and A. J. Davy, eds.), pp. 385–398, Blackwell, Oxford.Google Scholar
  2. Abram, J. W., and Nedwell, D. B., 1978a, Inhibition of methanogenesis by sulphate reducing bacteria competing for transferred hydrogen, Arch. Microbiol. 117:89–92.PubMedCrossRefGoogle Scholar
  3. Abram, J. W., and Nedwell, D. B., 1978b, Hydrogen as a substrate for methanogenesis and sulphate reduction in anaerobic saltmarsh sediment. Arch. Microbiol. 117:93–97.PubMedCrossRefGoogle Scholar
  4. Aller, R. C., and Vingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.CrossRefGoogle Scholar
  5. Aller, R. C., Benninger, L. K., and Cochran, J. K., 1980, Tracking particle-associated processes in nearshore environments by use of 234Th/238U disequilibrium, Earth Planet. Sci. Lett. 47:161–175.CrossRefGoogle Scholar
  6. Ansbaek, J., and Blackburn, T. H., 1980, A method for the analysis of acetate turnover in a coastal marine sediment, Microb. Ecol. 5:253–264.CrossRefGoogle Scholar
  7. Ansell, A. D., 1974, Sedimentation of organic detritus in Lochs Etive and Creran, Argyll, Scotland, Mar. Biol. 27:263–273.CrossRefGoogle Scholar
  8. Balba, M. T., and Evans, W. C., 1977, The methanogenic fermentation of aromatic substrates, Biochem. Soc. Trans. 5:302–304.PubMedGoogle Scholar
  9. Balba, M. T., and Evans, W. C., 1980, The anaerobic dissimilation of benzoate by Pseudomonas aeruginosa coupled with Desulfovibrio vulgaris. with sulphate as terminal electron acceptor, Biochem. Soc. Trans. 8:624–625.PubMedGoogle Scholar
  10. Balba, M. T., and Nedwell, D. B., 1982, Microbial metabolism of acetate, propionate and butyrate in anoxic sediment from Colne Point saltmarsh, Essex, U.K., J. Gen. Microbiol. 128:1415–1422.Google Scholar
  11. Banat, I. M., and Nedwell, D. B., 1983, Mechanisms of turnover of C2-C4 fatty acids in highsulphate and low-sulphate anaerobic sediments, FE MS Microbiol. Lett. 17:107–110.CrossRefGoogle Scholar
  12. Banat, I. M., Lindström, E. B., Nedwell, D. B., and Balba, M. T., 1981, Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in salt marsh sediment, Appl. Environ. Microbiol. 42:985–992.PubMedGoogle Scholar
  13. Banat, L M., Nedwell, D. B., and Balba, M. T., 1983, Stimulation of methanogenesis by slurries of saltmarsh sediment by addition of molybdate to inhibit sulphate-reducing bacteria, J. Gen. Microbiol. 129:123–129.Google Scholar
  14. Barber, R. T., 1968, Dissolved organic carbon from deep waters resists microbial oxidation, Nature (London) 220:274–275.CrossRefGoogle Scholar
  15. Benoit, G. J., Turekian, K. K., and Benninger, L. K., 1979, Radiocarbon dating of a core from Long Island Sound, Estuarine Coastal Mar. Sci. 9:171–180.CrossRefGoogle Scholar
  16. Berner, R. A., 1978, Sulfate reduction and the rate of deposition of marine sediments, Earth Planet. Sci. Lett. 37:492–498.CrossRefGoogle Scholar
  17. Berner, R. A., 1980a, Early Diagenesis—A Theoretical Approach. Princeton University Press, Princeton, New Jersey.Google Scholar
  18. Berner, R. A., 1980b, A rate model for organic matter decomposition during bacterial sulphate reduction in marine sediments, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 35–45, CNRS, Paris.Google Scholar
  19. Billen, G., 1982, Modelling the processes of organic matter degradation and nutrients recycling in sedimentary systems, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 15–52, Academic Press, London.Google Scholar
  20. Billen, G., and Verbeustel, S., 1980, Distribution of microbial metabolisms in natural environments displaying gradients of oxidation-reduction reactions, in: Biogéochemie de la Matière Organique a Vlnterface Eau-Sediment Marin (R. Daumas, ed.), pp. 291–300, CNRS, Paris.Google Scholar
  21. Bloesch, J., Stadelmann, P., and Buhrer, H., 1977, Primary production, mineralization, and sedimentation in the euphotic zone of two Swiss lakes, Limnol. Oceanogr. 22:511–526.CrossRefGoogle Scholar
  22. Boone, D. R., and Bryant, M. P., 1980, Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems, Appl. Environ. Microbiol. 40:626–632.PubMedGoogle Scholar
  23. Bouldin, D. R., 1968, Models for describing the diffusion of oxygen and other mobile constituents across the mud-water interface, J. Ecol. 56:77–87.CrossRefGoogle Scholar
  24. Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S., 1967, Methanobacillus omelianskii. a symbiotic association of two species of bacteria. Arch. Microbiol. 59:20–31.Google Scholar
  25. Burns, R. G., 1978, Soil Enzymes. Academic Press, London.Google Scholar
  26. Cappenberg, T. E., 1974a, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. 1. Field observations, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:285–295.Google Scholar
  27. Cappenberg, T. E., 1974b, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments, Antonie van Leeuwenhoek J. Microbiol. Serol. 40:297–306.Google Scholar
  28. Cappenberg, T. E., 1975, A study of mixed continuous cultures of sulphate-reducing and methane-producing bacteria, Microb. Ecol. 2:60–72.CrossRefGoogle Scholar
  29. Cappenberg, T. E., and Jongejan, E., 1978, Microcnvironments for sulfate reduction and methane production in freshwater sediments, in: Environmental Biogeochemistry and Geomicrobiology. Vol. 1 (W. E. Krumbein, ed.), pp. 129–138, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  30. Cappenberg, T. E., and Prins, R. A., 1974, Interrelations between sulphate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. III. Experiments with 14C-labelled substrates, Antonie van Leeuwenhoek J. Microbiol Serol. 40:457–469.CrossRefGoogle Scholar
  31. Christensen, D., and Blackburn, T. H., 1980, Turnover of tracer (14C, 3H labelled) alanine in inshore marine sediments. Mar. Biol. 58:97–103.CrossRefGoogle Scholar
  32. Christian, R. R., and Wiebe, W. J., 1978, Anaerobic microbial community metabolism in Spartina alterniflora soils, Limnol. Oceanogr. 23:328–336.CrossRefGoogle Scholar
  33. Davies, J. M., 1975, Energy flow through the benthos in a Scottish sea loch, Mar. Biol. 31:353–362.CrossRefGoogle Scholar
  34. Degens, E. T., and Mopper, K., 1976, Factors controlling the distribution and early diagenesis of organic material in marine sediments, in: Chemical Oceanography (J. P. Riley and R. Chester, eds.), pp. 59–113, Academic Press, London.Google Scholar
  35. De la Cruz, A. A., 1975, Proximate nutritive value changes during decomposition of saltmarsh plants, Hydrobiologia 47:475–480.CrossRefGoogle Scholar
  36. Evans, W. C., 1977, Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature (London) 270:17–22.CrossRefGoogle Scholar
  37. Fallon, R. D., and Pfaender, F. K., 1976, Carbon metabolism in model microbial systems from a temperate salt marsh, Appl. Environ. Microbiol. 31:959–968.PubMedGoogle Scholar
  38. Fallon, R. D., Harrits, S., Hanson, R. S., and Brock, T. D., 1980, The role of methane in internal carbon cycling in Lake Mendota during summer stratification, Limnol. Oceanogr. 25:357–360.CrossRefGoogle Scholar
  39. Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling. Academic Press, London.Google Scholar
  40. Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 285–299, Blackwell, Oxford.Google Scholar
  41. Fenchel, T., and J0rgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, Adv. Microb. Ecol. 1:1–58.Google Scholar
  42. Ferry, J. G., and Wolfe, R. S., 1976, Anaerobic degradation of benzoate to methane by a microbial consortium, Arch. Microbiol. 107:33–40.PubMedCrossRefGoogle Scholar
  43. Fogg, G. E., 1966, The extracellular products of algae, Oceanogr. Mar. Biol. Annu. Rev. 4:195–212.Google Scholar
  44. Francis, A. J., Duxbury, J. M., and Alexander, M., 1975, Formation of volatile organic products in soils under anaerobiosis. II. Metabolism of amino acids, Soil Biol. Biochem. 7:51–56.CrossRefGoogle Scholar
  45. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis, Geochim. Cosmochim. Acta 43:1075–1090.CrossRefGoogle Scholar
  46. Fry, J. C., 1982, Interactions between bacteria and benthic invertebrates, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 171–201, Academic Press, London.Google Scholar
  47. Godshalk, G. L., and Wetzel, R. G., 1978a, Decomposition of aquatic angiosperms. 1. Dissolved components, Aquat. Bot. 5:281–300.CrossRefGoogle Scholar
  48. Godshalk, G. L., and Wetzel, R. G., 1978b, Decomposition of aquatic angiosperms. II. Particulate components, Aquat. Bot. 5:301–327.CrossRefGoogle Scholar
  49. Godshalk, G. L., and Wetzel, R. G., 1978c, Decomposition of aquatic angiosperms. III. Zostera marina L. and a conceptual model of decomposition, Aquat. Bot. 5:329–354.CrossRefGoogle Scholar
  50. Hackett, W. F., Connors, W. J., Kirk, T. K., and Zeikus, J. G., 1977, Microbial decomposition of synthetic ‘‘14C-labelled lignins in nature: Lignin biodegradation in a variety of natural materials, Appl. Environ. Microbiol. 33:43–51.PubMedGoogle Scholar
  51. Hall, K. J., Kleiber, P. M., and Jesaki, I., 1972, Heterotrophic uptake of organic solutes by microorganisms in the sediment, Mem. 1st. Ital. Idrobiol. Suppl 29:441–471.Google Scholar
  52. Hanson, R. B., and Gardner, W. S., 1978, Uptake and metabolism of two amino acids by anaerobic microorganisms in four diverse salt marsh soils. Mar. Biol 46:101–108.CrossRefGoogle Scholar
  53. Hargrave, B. T., 1972, Aerobic decomposition of sediment and detritus as a function of particle surface area and organic content, Limnol. Oceanogr. 17:583–596.CrossRefGoogle Scholar
  54. Hines, M. E., and Buck, J. D., 1982, Distribution of methanogenic and sulfate-reducing bacteria in near-shore marine sediments, Appl. Environ. Microbiol. 43:447–453.PubMedGoogle Scholar
  55. Hippe, H., Caspari, D., Fiebig, K., and Gottschalk, G., 1979, Utilization of trimethylamine and other N-methyl compounds for growth and methane formation by Methanosarcina barkeri, Proc. Natl. Acad. Sci. U.S.A. 76:494–498.PubMedCrossRefGoogle Scholar
  56. Holm-Hansen, O., 1972, The distribution and chemical composition of particulate material in marine and freshwaters, Mem. 1st. Ital. Idrobiol. Suppl. 29:37–51.Google Scholar
  57. Honjo, S., 1978, Sedimentation of materials in the Sargasso Sea at a 5367 m deep station, J. Mar. Res. 36:469–492.Google Scholar
  58. Honjo, S., and Roman, M. R., 1978, Marine copepod faecal pellets: Production, preservation and sedimentation, J. Mar. Res. 36:45–57.Google Scholar
  59. Howeller, R. H., 1972, The oxygen status of lake sediments, J. Environ. Qual. 1:366–371.CrossRefGoogle Scholar
  60. Hylleberg, J., and Henriksen, K., 1980, The central role of bioturbation in sediment mineralization and element recycling, Ophelia Suppl. 1:1–16.Google Scholar
  61. Iannotti, E. L., Kafkewitz, C., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2, J. Bacteriol. 114:1231–1240.PubMedGoogle Scholar
  62. Ingvorsen, K., Zeikus, J. G., and Brock, T. D., 1981, Dynamics of bacterial sulfate reduction in a eutrophic lake, Appl. Environ. Microbiol. 42:1029–1036.PubMedGoogle Scholar
  63. Iturriaga, R., 1979, Bacterial activity related to sedimenting particulate matter. Mar. Biol. 55:157–169.CrossRefGoogle Scholar
  64. Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.PubMedGoogle Scholar
  65. Jones, J. G., 1971, Studies on freshwater bacteria: Factors which influence the population and its activity, J. Ecol. 59:593–613.CrossRefGoogle Scholar
  66. Jones, J. G., 1976, The microbiology and decomposition of seston in open water and experimental enclosures in a productive lake, J. Ecol. 64:241–278.CrossRefGoogle Scholar
  67. Jones, J. G., 1982, Activities of aerobic and anaerobic bacteria in lake sediments and their effect on the water column, in: Sediment Microbiology (D. B. Nedwell and C. M. Brown, eds.), pp. 107–145, Academic Press, London.Google Scholar
  68. Jones, J. G., and Simon, B. M., 1980, Decomposition processes in the profundal region of Blelham Tarn and the Lund Lakes, J. Ecol. 68:493–512.CrossRefGoogle Scholar
  69. Jones, J. G., and Simon, B. M., 1981, Differences in microbial decomposition processes in profundal and littoral lake sediments, with particular reference to the nitrogen cycle, J. Gen. Microbiol. 123:297–312.Google Scholar
  70. Jones, J. G., Simon, B. M., and Gardner, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol. 128:1–11.Google Scholar
  71. Jørgensen, B. B., 1978, A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. II. Calculation from mathematical models, Geomicrobiol. J. 1:29–47.CrossRefGoogle Scholar
  72. Jørgensen, B. B., 1980, Mineralization and the bacterial cycling of carbon, nitrogen and sulphur in marine sediments, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 239–252, Academic Press, London.Google Scholar
  73. Jorgensen, B. B., 1982, Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature (London) 296:643–645.CrossRefGoogle Scholar
  74. Khailov, K. M., and Burlakova, Z. P., 1969, Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities, Limnol. Oceanogr. 14:521–527.CrossRefGoogle Scholar
  75. King, G. M., and Wiebe, W. J., 1980, Tracer analysis of methanogenesis in saltmarsh soil, Appl. Environ. Microbiol. 39:877–881.PubMedGoogle Scholar
  76. Kristjansson, J. K., Schönheit, P., and Thauer, R. K., 1982, Different K s values for hydrogen of methanogenic bacteria and sulfate reducing bacteria, Arch. Microbiol. 131:278–282.CrossRefGoogle Scholar
  77. Laanbroek, H. J., and Pfennig, N., 1981, Oxidation of short chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments, Arch. Microbiol. 128:330–335.PubMedCrossRefGoogle Scholar
  78. Lastein, E., 1976, Recent sedimentation and resuspension of organic matter in eutrophic Lake Esrom, Denmark, Oikos 27:44–49.CrossRefGoogle Scholar
  79. Latham, M. J., and Wolin, M. J., 1977, Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium, Appl. Environ. Microbiol. 34:297–301.PubMedGoogle Scholar
  80. Lee, J. J., 1980, A conceptual model of marine detrital decomposition and the organisms associated with the process, Adv. Aquat. Microbiol. 2:257–291.Google Scholar
  81. Lovely, D. R., and Klug, M. J., 1982, Intermediary metabolism of organic matter in the sediments of a eutrophic lake, Appl. Environ. Microbiol. 43:552–560.Google Scholar
  82. Maccubbin, A. E., and Hodson, R. E., 1980, Mineralization of detrital lignocelluloses by salt marsh sediment microflora, Appl. Environ. Microbiol. 40:735–740.PubMedGoogle Scholar
  83. Mann, K. H., 1976, Decomposition of marine macrophytes, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 247–267, Blackwell, Oxford.Google Scholar
  84. Mclnerney, M. J., and Bryant, M. P., 1981, Basic principles of bioconversions in anaerobic digestion and methanogenesis, in: Biomass Conversion Processes for Energy and Fuels (S. S. Sofer and O. R. Zaborsky, eds.), pp. 277–296, Plenum Press, New York.CrossRefGoogle Scholar
  85. Mclnerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122:129–135.CrossRefGoogle Scholar
  86. Mclnerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. Microbiol. 41:1029–1039.Google Scholar
  87. Mechalas, B. J., 1974, Pathways and environmental requirements for biogenic gas production in the oceans, in: Natural Gases in Marine Sediments (I. R. Kaplan, ed.), pp. 12–25, Plenum Press, New York.Google Scholar
  88. Menzel, D. W., 1966, Bubbling of seawater and the production of organic particles: A revaluation, Deep-Sea Res. 13:963–966.Google Scholar
  89. Miller, D., Brown, C. M., Pearson, T. H., and Stanley, S. O., 1979, Some biologically important low molecular weight organic acids in the sediments of Loch Eil, Mar. Biol. 50:375–383.CrossRefGoogle Scholar
  90. Molongoski, J. J., and Klug, M. J., 1976, Characterization of anaerobic heterotrophic bacteria isolated from freshwater lake sediments, Appl. Environ. Microbiol. 31:83–90.PubMedGoogle Scholar
  91. Molongoski, J. J., and Klug, M. J., 1980a, Quantification and characterization of sedimenting particulate organic matter in a shallow hypereutrophic lake, Freshwater Biol. 10:497–506.CrossRefGoogle Scholar
  92. Molongoski, J. J., and Klug, M. J., 1980b, Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake, Freshwater Biol. 10:507–518.CrossRefGoogle Scholar
  93. Mopper, K., 1980, Carbohydrates in the marine environment: Recent developments, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 35–45, CNRS, Paris.Google Scholar
  94. Morris, J. G., 1975, The physiology of obligate anaerobiosis. Adv. Microb. Physiol. 12:169–246.CrossRefGoogle Scholar
  95. Mountfort, D. O., and Asher, R. A., 1981, Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 42:252–258.PubMedGoogle Scholar
  96. Mountfort, D. O., Asher, R. A., Mays, E. L., and Tiedje, J. M., 1980, Carbon and electron flow in mud and sandflat intertidal sediments at Delaware Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 39:686–694.PubMedGoogle Scholar
  97. Nedwell, D. B., and Banat, I. M., 1981, Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment, Microb. Ecol. 7:305–313.CrossRefGoogle Scholar
  98. Nelson, D. R., and Zeikus, J. G., 1974, Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism, Appl. Microbiol. 28:258–261.PubMedGoogle Scholar
  99. Odum, E. P., and de la Cruz, A. A., 1967, Particulate organic detritus in a Georgia salt marshestuarine system, in: Estuaries (G. H. Laufl, ed.), pp. 383–390, American Association for the Advancement of Science, Washington, D.C.Google Scholar
  100. Oppenheimer, C. H., 1960, Bacterial activity in sediments of shallow marine bays, Geochim. Cosmochim. Acta 19:244–260.CrossRefGoogle Scholar
  101. Oremland, R. S., and Taylor, B. P., 1978, Sulphate reduction and methanogenesis in marine sediments, Geochim. Cosmochim. Acta 42:209–214.CrossRefGoogle Scholar
  102. Oremland, R. S., Marsh, L., and DesMarais, D. J., 1982a, Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake, Appl. Environ. Microbiol. 43:462–468.PubMedGoogle Scholar
  103. Oremland, R. S., Marsh, L. M., and Polcin, S., 1982b, Methane production and simultaneous sulphate reduction in anoxic salt marsh sediments. Nature (London) 296:143–145.CrossRefGoogle Scholar
  104. Otsuki, A., and Hanya, T., 1972a, Production of dissolved organic matter from dead green algal cells. I. Aerobic microbial decomposition, Limnol. Oceanogr. 17:248–264.CrossRefGoogle Scholar
  105. Otsuki, A., and Hanya, T., 1972b, Production of dissolved organic matter from dead green algal cells. II. Anaerobic microbial decomposition, Limnol. Oceanogr. 17:258–264.CrossRefGoogle Scholar
  106. Parsons, T. R., 1963, Suspended organic matter in seawater, in: Progress in Oceanography. Vol. 1 (M. Sears, ed.), pp. 205–239, Pergamon Press, Oxford.Google Scholar
  107. Peck, H. D., 1959, The ATP-dependent reduction of sulphate with hydrogen in extracts of Desulfovibrio desulfuricans, Proc. Natl. Acad. Sci. U.S.A. 45:701–708.PubMedCrossRefGoogle Scholar
  108. Pennington, W., 1974, Seston and sediment formation in five Lake District lakes, J. Ecol. 62:215–251.CrossRefGoogle Scholar
  109. Piatt, H. M., 1979, Sedimentation and the distribution of organic matter in a sub-Antarctic marine bay, Estuar. Coastal Mar. Sci. 9:51–62.CrossRefGoogle Scholar
  110. Postgate, J. R., 1979, The Sulphate-Reducing Bacteria. Cambridge University Press, Cambridge.Google Scholar
  111. Qasim, S. Z., and Sankaranarayanan, V. V., 1972, Organic detritus of a tropical estuary. Mar. Biol. 15:193–199.CrossRefGoogle Scholar
  112. Redfield, A. C., Ketchum, B. H., and Richards, F. A., 1963, The influence of organisms on the composition of sea-water, in: The Sea. Vol. 2 (M. N. Hill, ed.), pp. 26–77, Interscience, New York.Google Scholar
  113. Reeburgh, W. S., 1980, Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett. 47:345–352.CrossRefGoogle Scholar
  114. Reeburgh, W. S., and Heggie, D. T., 1977, Methane consumption reactions and their efl’ect on methane distributions in freshwater and marine environments, Limnol. Oceanogr. 22:1–9.CrossRefGoogle Scholar
  115. Revsbech, N. P., Serensen, J., and Blackburn, T. H., 1980, Distribution of oxygen in marine sediments measured with microelectrodes, Limnol. Oceanogr. 25:403–411.CrossRefGoogle Scholar
  116. Rowe, G. T., and Gardner, W. D., 1979, Sedimentation rates in the slope water of the northwest Atlantic Ocean measured directly with sediment traps, J. Mar. Res. 37:581–600.Google Scholar
  117. Saunders, G. W., 1976, Decomposition in freshwater, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 341–373, Blackwell, Oxford.Google Scholar
  118. Scheifinger, C. C., Lineham, B., and Wolin, M. J., 1975, H2 production by Selenomonas ruminantium in the absence and presence of methanogenic bacteria, Appl. Microbiol. 29:480–483.PubMedGoogle Scholar
  119. Schink, B., and Zeikus, J. G., 1980, Microbial methanol formation: A major end product of pectin metabolism, Curr. Microbiol. 4:387–390.CrossRefGoogle Scholar
  120. Schink, B., and Zeikus, J. G., 1982, Microbial ecology of pectin decomposition in anoxic lake sediments, J. Gen. Microbiol. 128:393–404.Google Scholar
  121. Schönheit, P., Kristjansson, J. K., and Thauer, R. K., 1982, Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. Arch. Microbiol. 132:285–288.CrossRefGoogle Scholar
  122. Seki, H., Skelding, J., and Parsons, T. R., 1968, Observations on the decomposition of a marine sediment, Limnol. Oceanogr. 13:440–448.CrossRefGoogle Scholar
  123. Senez, J. C., and Leroux-Gitteron, J., 1954, Preliminary note on the anaerobic degradation of cysteine and cystine by sulphate-reducing bacteria. Bull. Soc. Chim. Biol. 36:553–559.PubMedGoogle Scholar
  124. Senior, E., Lindström, E. B., Banat, I. M., and Nedwell, D. B., 1982, Sulfate reduction and methanogenesis in the sediment of a saltmarsh on the east coast of the United Kingdom, Appl. Environ. Microbiol. 43:987–996.PubMedGoogle Scholar
  125. Slater, J. H., and Godwin, D., 1980, Microbial adaptation and selection, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 137–160, Academic Press, London.Google Scholar
  126. Smith, R. L., and Klug, M. J., 1981, Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments, Appl. Environ. Microbiol. 42:116–121.PubMedGoogle Scholar
  127. S0rensen, J., Christensen, D., and Jorgensen, B. B., 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediments, Appl. Environ. Microbiol. 42:5–11.PubMedGoogle Scholar
  128. Steele, J. H., 1974, The Structure of Marine Ecosystems. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  129. Stephens, K., Sheldon, R. W., and Parsons, T. R., 1967, Seasonal variations in the availability of food for benthos in a coastal environment.Ecology 48:852–855.CrossRefGoogle Scholar
  130. Strayer, R. F., and Tiedje, J. M., 1978, Kinetic parameters of the conversion of methane precursors to methane in a hypereutrophic lake sediment, Appl. Environ. Microbiol. 36:330–340.PubMedGoogle Scholar
  131. Suess, E., and Muller, P. J., 1980, Productivity, sedimentation rate and sedimentary organic matter in the oceans. IL Elemental fractionation, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 17–26, CNRS, Paris.Google Scholar
  132. Taguchi, S., 1982, Sedimentation of newly produced particulate organic matter in a subtropical inlet, Kaneohe Bay, Hawaii, Estuarine Coastal Shelf Sci. 14:533–544.CrossRefGoogle Scholar
  133. Tewes, F. J., and Thauer, R. K., 1980, Regulation of ATP-synthesis in glucose-fermenting bacteria involved in interspecies hydrogen transfer, in: Anaerobes and Anaerobic Infections (G. Gottschalk, N. Pfennig, and H. Werner, eds.), pp. 97–104, Gustav Fischer Verlag, Stuttgart.Google Scholar
  134. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  135. Toth, D. J., and Lerman, A., 1977, Organic matter reactivity and sedimentation rates in the ocean, Am. J. Sci. 277:465–485.CrossRefGoogle Scholar
  136. Turekian, K. K., Benoit, G. J., and Benninger, L. K., 1980, The mean residence time of planktonderived carbon in a Long Island Sound sediment core: A correction, Estuarine Coastal Mar. Sci. 11:583.CrossRefGoogle Scholar
  137. Vigneaux, M., Dumon, J. C., Faugeres, J. C., Grousset, F., Jouanneau, J. M., Latouche, C., Poutiers, J., and Pujol, C., 1980, Matières organiques et sedimentation en milieu marin, in: Biogéochemie de la Matière Organique a I’Interface Eau-Sediment Marin (R. Daumas, ed.), pp. 113–128, CNRS, Paris.Google Scholar
  138. Webster, T. J. M., Paranjape, M. A., and Mann, K. H., 1975, Sedimentation of organic matter in St. Margarets Bay, Nova Scotia, J. Fish. Res. Board Canada 32:1399–1407.CrossRefGoogle Scholar
  139. Wellinger, A., and Wuhrmann, K., 1977, Influence of sulfide compounds on the metabolism of Methanobacterium strain AZ, Arch. Microbiol. 115:13–17.PubMedCrossRefGoogle Scholar
  140. Wetzel, R. G., Rich, P. R., Miller, M. C., and Allen, H. L., 1972, Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake, Mem. 1st. I tal. Idrobiol. Suppl. 29:185–243.Google Scholar
  141. Widdel, F., 1980, Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten sulfat-reduzierender Bakterien, Doctoral thesis, University of Göttingen, FDR.Google Scholar
  142. Wiebe, P. H., Boyd, S. H., and Winget, C., 1976, Particulate matter sinking to the deep-sea floor at 2000 m in the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap, J. Mar. Res. 34:341–354.Google Scholar
  143. Winfrey, M. R., and Zeikus, J. G., 1977, Efl’ect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33:275–281.PubMedGoogle Scholar
  144. Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol. 37:244–253.PubMedGoogle Scholar
  145. Winfrey, M. R., Nelson, D. R., Klevickis, S. C., and Zeikus, J. G., 1977, Association of hydrogen metabolism with methanogenesis in Lake Mendota sediments, Appl. Environ. Microbiol. 33:312–318.PubMedGoogle Scholar
  146. Winter, J., and Wolfe, R. S., 1980, Methane formation from fructose by syntrophic association of Acetobacterium woodii and difl’erent strains of methanogens, Arch. Microbiol. 124:73–79.PubMedCrossRefGoogle Scholar
  147. Wolfe, R. S., 1971, Microbial formation of methane. Adv. Microb. Physiol. 6:107–146.PubMedCrossRefGoogle Scholar
  148. Wolfe, R. S., and Higgins, L J., 1979, Microbial biochemistry of methane—a study in contrasts: Microbial Biochemistry, Int. Rev. Biochem. 21:270–300.Google Scholar
  149. Wolin, M. J., 1976, Interactions between H2-producing and methane-producing species, in: Microbial Formation and Utilization of Gases (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 141–150, E. Goltze K. G., Gottingen.Google Scholar
  150. Zaiss, U., 1981, Seasonal studies of methanogenesis and desulfurication in sediments of the River Saar, Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. 1: Orig. C 2:76–89.Google Scholar
  151. Zeikus, J. G., 1981, Lignin metabolism and the carbon cycle: Polymer biosynthesis, biodegradation, and environmental recalcitrance. Adv. Microb. Ecol. 5:211–243.Google Scholar
  152. Zeitschel, B., 1965, Zur Sedimentation von Seston, eine produktionsbiologische Untersuchung von Sinkstoffen und Sedimentation der westlichen und mittleren Ostsee, Kieler Meeresforsch. 21:55–80.Google Scholar
  153. Zinder, S. H., and Brock, T. D., 1978, Methane, carbon dioxide and hydrogen sulfide production from the terminal thiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35:344–352.PubMedGoogle Scholar
  154. Zobell, C. E., 1946, Marine Microbiology. Chronica Botanica, Waltham, Massachusetts.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • David B. Nedwell
    • 1
  1. 1.Department of BiologyUniversity of EssexColchesterUK

Personalised recommendations