Advertisement

Microbial Ecology of Desert Soils

  • J. Skujinš
Part of the Advances in Microbial Ecology book series (AMIE, volume 7)

Abstract

For many years, arid desert soils were considered economically unimportant, and any ecological research, including the examination of microbial characteristics, was sporadic. During the past two decades, however, the economic and agricultural utilization of arid lands has emerged as a critical element in maintaining and improving the world’s food supply; consequently, biological and environmental research on these soils has increased. The expansion of deserts (desertification process) due to human impact, often in combination with adverse climatic disasters, has reinforced the necessity of understanding biological processes in xeric environments. In comparison with the body of knowledge about physical processes and about floral and faunal aspects in marginally utilizable arid areas, relatively little detailed information about arid-soil biological properties exists. Although certain patterns of arid-soil biological properties have emerged from the examination of several desert ecosystems, it is still premature to generalize about soil biological characteristics on a global desert biome level. Considerably more information is available on subhumid and semiarid cultivated soils (Focht and Martin, 1979).

Keywords

Water Potential Nitrogen Fixation Soil Water Potential Arid Ecosystem Desert Soil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Ghaffar, A. S., and Fawaz, K. M., 1977, Soil bacteria, in: Systems Analysis of Mediterranean Desert Ecosystems of Northern Egypt (M. A. Ayyad, ed.), Progress Report No. 3, pp. 13/1–13/31, University of Alexandria, Alexandria, Egypt.Google Scholar
  2. Aldon, E. F., 1978, Endomycorrhizae enhance shrub growth and survival on mine spoils, in: The Reclamation of Disturbed Arid Lands (R. A. Wright, ed.), pp. 174–179, University of New Mexico Press, Albuquerque.Google Scholar
  3. Alexander, M., 1976, Natural selection and the ecology of microbial adaptation in a biosphere, in: Extreme Environments (M. R. Heinrich, ed.), pp. 3–25, Academic Press, New York.Google Scholar
  4. Allen, M. F., Smith, W. K., Moore, T. S., and Christensen, M., 1981, Comparative water relations and photosynthesis of mycorrhizal and non-mycorrhizal Bouteloua gracilis H. B. K. Lag ex Steud., New Phytol 88:683–693.CrossRefGoogle Scholar
  5. Bagyaraj, D. J., and Menge, J. A., 1978, Interaction between a VA-mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol. 80:567–583.CrossRefGoogle Scholar
  6. Bailey, H. P., 1979, Semiarid climates: Their definition and distribution, in: Agriculture in Semi-Arid Environments (A. E. Hall, G. H. Cannell, and H. W. Lawton, eds.), pp. 73–97, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  7. Barrow, N. J., Malajczuk, N., and Shaw, T. C., 1977, A direct test of the ability of vesiculararbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytol. 78:269–276.CrossRefGoogle Scholar
  8. Barth, R. C., and Klemmedson, J. O., 1978, Shrub-induced spatial patterns of dry matter, nitrogen, and organic carbon, Soil Sci. Soc. Am. J. 42:804–809.CrossRefGoogle Scholar
  9. Bauman, A. J., 1976, Desert varnish and marine ferromanganese oxide nodules: Congeneric phenomena, Nature (London) 259:387–388.CrossRefGoogle Scholar
  10. Beadle, N. C. W., 1959, Some aspects of ecological research in semi-arid Australia, in: Biogeography and Ecology in Australia (A. T. Keast, ed.), pp. 452–460, W. Junk, The Hague, Netherlands.Google Scholar
  11. Beadle, N. C. W., 1964, Nitrogen economy in arid and semiarid plant communities. III. The symbiotic nitrogen-fixing organisms, Proc. Linn. Soc. N. S. W. 89:273–286.Google Scholar
  12. Biederbeck, V. O., Campbell, C. A., and Nickolaichuk, W., 1977, Simulated dew formation and microbial growth in soil of a semiarid region of western Canada, Can. J. Soil Sci. 57:93–102.CrossRefGoogle Scholar
  13. Binet, P., 1981, Short-term dynamics of minerals in arid ecosystems, in: Arid Land Ecosystems: Structure, Functioning and Management. Vol. 2 (D. W. Goodall and R. A. Perry, eds.), pp. 325–356, Cambridge University Press, Cambridge.Google Scholar
  14. Bishay, A., and McGinnies, W. G. (eds.), 1979, Advances in Desert and Arid Land Technology and Development. Vol. 1, Harwood Academic Publishers, Chur, Switzerland.Google Scholar
  15. Booth, W. E., 1941, Algae as pioneers in plant succession and their importance in erosion control, Ecology 22:38–46.CrossRefGoogle Scholar
  16. Borut, W., 1960, An ecological and physiological study of soil fungi in the Northern Negev (Israel), Bull. Res. Counc. Isr. Sect. D 8:65–80.Google Scholar
  17. Brock, T. D., 1975, Effect of water potential on a Microcoleus (Cyanophyceae) from a desert crust, J. Phycol. 11:316–320.Google Scholar
  18. Brock, T. D., 1979, Ecology of saline lakes, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 29–47, Verlag Chemie, Weinheim.Google Scholar
  19. Broekman, E. R., 1976, Myxobacters from arid Mexican soil, Appl. Environ. Microbiol. 32:642–644.Google Scholar
  20. Brown, A. D., 1976, Microbial water stress, Bacteriol. Rev. 40:803–846.PubMedGoogle Scholar
  21. Brown, A. D., 1979, Physiological problems of water stress, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 65–81, Verlag Chemie, Weinheim.Google Scholar
  22. Cameron, R. E., 1969, Cold desert characteristics and problems relevant to other arid lands, in: Arid Lands in Perspective (W. G. McGinnies and B. J. Goldman, eds.), pp. 167–205, University of Arizona Press, Tucson.Google Scholar
  23. Cameron, R. E., 1972, Microbial and ecological investigations in Victoria Valley, southern Victoria Land, Antarctica, in: Antarctica Terrestrial Biology (G. A. Llano, ed.), pp. 195–260, American Geophysical Union, Washington, D.C.CrossRefGoogle Scholar
  24. Cameron, R. E., and Blank, G. B., 1965, A. Soil studies: Microflora of desert regions. VIII. Distribution and abundance of desert microflora, in: JPL Space Programs Summary No. 37–34. Vol. IV, pp. 193–202, California Institute of Technology, Pasadena.Google Scholar
  25. Cameron, R. E., Blank, G. B., Gensel, D. R., and Davies, R. W., 1965, C. Soil properties of samples from the Chile Atacama Desert, in: JPL Space Programs Summary No. 37–35. Vol. IV, pp. 214–223, California Institute of Technology, Pasadena.Google Scholar
  26. Cameron, R. E., Honour, R. C., and Morelli, F. A., 1976, Antarctic microbiology, in: Extreme Environments (M. R. Heinrich, ed.), pp. 57–82, Academic Press, New York.Google Scholar
  27. Charley, J. L., 1972, The role of shrubs in nutrient cycling, in: Wildland Shrubs—Their Biology and Utilization (C. M. McKell, J. P. Blaisdell, and J. R. Goodin, eds.), pp. 182–203, U.S. Department of Agriculture Forest Service, General Technical Report INT-1, Ogden, Utah.Google Scholar
  28. Charley, J. L., and West, N. E., 1975, Plant-induced soil chemical patterns in some shrub-dominated semi-desert ecosystems in Utah, J. Ecol. 63:945–963.CrossRefGoogle Scholar
  29. Charley, J. L., and West, N. E., 1977, Micropatterns of nitrogen mineralization activity in soils of some shrub-dominated semi-desert ecosystems in Utah, Soil Biol. Biochem. 9:357–365.CrossRefGoogle Scholar
  30. Comanor, P. L., and Staffeldt, E. E., 1978, Decomposition of plant litter in two western North American deserts, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 31–49, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  31. Cook, R. J., and Pappendick, R. I., 1970, Soil water potential as a factor in the ecology of Fusarium roseum f. sp. cerealis “Culmorum,” Plant Soil 32:131–145.CrossRefGoogle Scholar
  32. Crawford, C. S., 1979, Desert detritivores: A review of life history patterns and trophic roles, J. Arid Environ. 2:31–42.Google Scholar
  33. Cundell, A. M., 1977, The role of microorganisms in the revegetation of strip-mined land in the western United States, J. Range Manage. 30:299–305.CrossRefGoogle Scholar
  34. Davidson, R. W., and Mielke, J. L., 1947, Pomes robustus. a heart-rot fungus on cacti and other desert plants, Mycologia 39:210–217.CrossRefGoogle Scholar
  35. Diab, A., 1978, Studies on thermophilic microorganisms in certain soils in Kuwait, Zentralbl. Bakteriol. Parasitenkd. II 133:579–587.Google Scholar
  36. Diab, A., and Zaidan, A., 1976, Actinomycetes in the desert of Kuwait, Zentralbl. Bakteriol. Parasitenkd. II 131:545–554.Google Scholar
  37. Dogan, A., 1975, Some effects of microflora on surface runoff quality, Ph.D. dissertation, Utah State University, Logan.Google Scholar
  38. Dommergues, Y., 1962a, Contribution a l’étude de la dynamique microbienne des sols en zone semi-aride et zone tropicale sèche. I, Ann. Agron. 13:265–324.Google Scholar
  39. Dommergues, Y., 1962b, Contribution a l’étude de la dynamique microbienne des sols en zone semi-aride et zone tropicale sèche. II, Ann. Agron. 13:391–468.Google Scholar
  40. Dommergues, Y., and Mangenot, F., 1970, Écologie Microbienne du Sol. Masson et Cie, Paris.Google Scholar
  41. Dorn, R. I., and Oberlander, T. M., 1981, Microbial origin of desert varnish, Science 213:1245–1247.PubMedCrossRefGoogle Scholar
  42. Dregne, H. E., 1968, Appraisal of research on surface materials of desert environments, in: Deserts of the World (W. G. McGinnies, B. J. Goldman, and P. Paylore, eds.), pp. 287–377, University of Arizona Press, Tucson.Google Scholar
  43. Dregne, H. E., 1976, Soils of Arid Regions. Elsevier, Amsterdam.Google Scholar
  44. Dubost, D., and Hethener, P., 1966, Apercu microbiologique des sols de deux oasis du Tassili N’Ajjer: Djanet et Iheria, Trav. Inst. Rech. Sahariennes 25:7–27.Google Scholar
  45. Durrell, L. W., and Shields, L. M., 1960, Fungi isolated in culture from soils of the Nevada test site, Mycologia 52:636–641.CrossRefGoogle Scholar
  46. Elvidge, C. D., and Moore, C. B., 1979, A model for desert varnish formation, Geol. Soc. Am. Abstr. Program 11:271.Google Scholar
  47. Elwan, S. H., and Diab, A., 1970a, Studies in desert microbiology. II. Development of bacteria in the rhizosphere and soil of Artemisia monosperma Del. in relation to environment, U. A. R. J. Bot. 13:97–108.Google Scholar
  48. Elwan, S. H., and Diab, A., 1970b, Studies in desert microbiology. III. Certain aspects of the rhizosphere effect of Rhazya strict a Decn. in relation to environment, U. A. R. J. Bot. 13:109–119.Google Scholar
  49. Elwan, S. H., and Diab, A., 1970c, Studies in desert microbiology. IV. Bacteriology of the root region of a fodder xerophyte in relation to environment, U. A. R. J. Bot. 13:159–169.Google Scholar
  50. Elwan, S. H., and Diab, A., 1970d, Studies in desert microbiology. V. Certain patterns of bacterial development in relation to depth and environment, U. A. R. J. Bot. 13:171–179.Google Scholar
  51. Elwan, S. H., and Diab, A., 1976, Actinomycetes of an Arabian desert soil, Egypt. J. Bot. 19:111–114.Google Scholar
  52. Elwan, S. H., and Mahmoud, S. A. Z., 1960, Note on the bacterial flora of the Egyptian desert in summer, Arch. Microbiol. 36:360–364.Google Scholar
  53. Englund, B., 1975, Potential nitrogen fixation by blue-green algae in some Tunisian and Swedish soils. Plant Soil 43:419–431.CrossRefGoogle Scholar
  54. Evenson, A. E., 1961, A preliminary report of the myxomycetes of southern Arizona, Mycologia 13:137–144.CrossRefGoogle Scholar
  55. Farnsworth, R. B., 1975, Nodulation and nitrogen fixation in shrubs, in: Proceedings of the Symposium and Workshop on Wildland Shrubs (H. C. Stutz, ed.), pp. 32–71, Brigham Young University Press, Provo, Utah.Google Scholar
  56. Faust, W. F., 1971, Blue-green algal effects on some hydrologie processes at the soil surface, in: Hydrology and Water Resources in Arizona and the Southwest, Proceedings of the 1971 Meeting of the Arizona Section of the American Water Resources Association, and the Hydrological Section of the Arizona Academy of Sciences. pp. 99–105, Tempe, Arizona.Google Scholar
  57. Felker, P., and Clark, P. R., 1982, Position of mesquite (Prosopis spp.) nodulation and nitrogen fixation (acetylene reduction) in 3-m long phraetophytically simulated soil columns, Plant Soil 64:297–305.CrossRefGoogle Scholar
  58. Fletcher, J. E., 1960, Some effects of plant growth on infiltration in the southwest, in: Water Yield in Relation to Environment in the Southwestern United States. American Association for the Advancement of Science Symposium, pp. 51–63, Houston, Texas.Google Scholar
  59. Fletcher, J. E., and Martin, W. P., 1948, Some effects of algae and molds in the rain-crust of desert soils. Ecology 29:95–100.CrossRefGoogle Scholar
  60. Focht, D. D., and Martin, J. P., 1979, Microbiological and biochemical aspects of semiarid agricultural soils, in: Agriculture in Semi-Arid Environments (A. E. Hall, G. H. Cannell, and H. W. Lawton, eds.), pp. 119–147, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  61. Forster, S. M., 1979, Microbial aggregation of sand in an embryo dune system, Soil Biol. Biochem. 11:537–543.CrossRefGoogle Scholar
  62. Franz, G., 1971, Mikrobiologische Characterisierung einiger natürlicher und kultivierter Standorte in drei verschiedenen ökologischen Regionen Chiles, Plant Soil 34:133–158.CrossRefGoogle Scholar
  63. Friedmann, E. I., 1982, Endolithic microorganisms in the antarctic cold desert, Science 215:1045–1053.PubMedCrossRefGoogle Scholar
  64. Friedmann, E. I., and Galun, M., 1974, Desert algae, lichens, and fungi, in: Desert Biology (G. E. Brown, ed.), pp. 165–212, Academic Press, New York.Google Scholar
  65. Friedmann, E. I., and Ocampo, R., 1976, Endolithic blue-green algae in the dry valleys: Primary producers in the antarctic desert ecosystem, Science 193:1247–1249.PubMedCrossRefGoogle Scholar
  66. Friedmann, E. I., Lipkin, Y., and Ocampo-Paus, R., 1967, Desert algae of the Negev (Israel), Phycologia 6:185–196.CrossRefGoogle Scholar
  67. Fuller, W. H., 1974, Desert soils, in: Desert Biology. Vol. 2 (G. E. Brown, ed.), pp. 31–101, Academic Press, New York.Google Scholar
  68. Garcia-Moya, E., and McKell, C. M., 1970, Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology 51:81–88.CrossRefGoogle Scholar
  69. Gerdemann, J. W., and Trappe, J. M., 1974, The Endogonaceae in the Pacific Northwest, Mycologia Mem. 5:1–76.Google Scholar
  70. Gifford, G. F., 1972, Infiltration rate and sediment production trends on a plowed big sagebrush site, J. Range Manage. 25:53–55.CrossRefGoogle Scholar
  71. Grenot, C. J., 1974, Physical and vegetational aspects of the Sahara desert, in: Desert Biology. Vol. 2 (G. E. Brown, ed.), pp. 103–164, Academic Press, New York.Google Scholar
  72. Griffin, D. M., 1972, The Ecology of Soil Fungi. Chapman and Hall, London.Google Scholar
  73. Griffin, D. M., 1981, Water and microbial stress, in: Advances in Microbial Ecology. Vol. 5 (M. Alexander, ed.), pp. 91–136, Plenum Press, New York.Google Scholar
  74. Griffin, D. M., and Luard, E. J., 1979, Water stress and microbial ecology, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 49–63, Verlag Chemie, Weinheim.Google Scholar
  75. Haddad, S. G., 1972, Identification of Bacillus sp. and the ecological significance of its protease, M.S. thesis. New Mexico State University, Las Cruces.Google Scholar
  76. Hadley, N. F., and Szarek, S. R., 1981, Productivity of desert ecosystems, Bioscience 31:747–753.Google Scholar
  77. Hall, I. R., 1978, Effects of endomycorrhizas on the competitive ability of white clover, N. Z. J. Agric. Res. 21:509–515.CrossRefGoogle Scholar
  78. Hall, I. R., and Armstrong, P., 1979, Effect of vesicular-arbuscular mycorrhizas on growth of white clover, lotus, and ryegrass in some eroded soils, N. Z. J. Agric. Res. 22:479–484.CrossRefGoogle Scholar
  79. Hammouda, F. M. M., 1980, Biological nitrogen fixation in the desert ecosystems of Egypt, Ph.D. thesis, Alexandria University, Alexandria, Egypt.Google Scholar
  80. Hanks, R. J., and Ashcroft, G. L., 1980, Applied Soil Physics—Soil Water and Temperature Applications. Springer-Verlag, Berlin.Google Scholar
  81. Heinrich, M. R. (ed.), 1976, Extreme Environments. Academic Press, New York.Google Scholar
  82. Hethener, P., 1967, Activité microbiologique des sols ä Cupressus dupreziana A. Camus au Tassili N’Ajjer (Sahara central), Bull. Soc. Hist. Nat. Afr. Nord 58:39–100.Google Scholar
  83. Hirrell, M. C., Mehravaran, H., and Gerdemann, J. W., 1978, Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: Do they occur?, Can. J. Bot. 56:2813–2817.CrossRefGoogle Scholar
  84. Horowitz, N. H., 1979, Biological water requirements, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 15–27, Verlag Chemie, Weinheim.Google Scholar
  85. Hunt, C. B., and Durrell, L. W., 1966, Distribution of fungi and algae, U.S. Geol. Surv. Prof Pap. 509:55–66.Google Scholar
  86. Hunter, R. B., Wallace, A., Romney, E. M., and Wieland, P. A. T., 1975, Nitrogen transformations in Rock Valley and adjacent areas of the Mohave Desert, US/IBP Desert Biome Res. Memo. 75–35. Utah State University, Logan.Google Scholar
  87. Johnson, R. M., 1973, Microbial investigations at the Chaabania site in Tunisia, in: Systems Analysis of the Presaharan Ecosystem of Southern Tunisia. Report No. 1 (G. Novikoff, F. H. Wagner, and D. Skouri, eds.), pp. 46–57, Utah State University, Logan.Google Scholar
  88. Jung, G., 1967, Influence de l’Acacia albida (Del.) sur la biologie des sols dior, ORSTOM, Dakar, Senegal.Google Scholar
  89. Khudairi, A. K., 1969, Mycorrhiza in desert soils, BioScience 19:598–599.Google Scholar
  90. Killian, C., and Feher, D., 1935, Recherches sur les phénomènes microbiologiques des sols sahariens, Ann. Inst. Pasteur 55:573–623.Google Scholar
  91. Killian, C., and Feher, D., 1938, Le róle et l’importance de l’exploration microbiologique des sols sahariens, in: La Vie dans la Region Desertique Nord-tropicale de 1’Ancien Monde. pp. 81–106, Société de Bio-géographie, Paris.Google Scholar
  92. Killian, C., and Feher, D., 1939, Recherches sur la microbiologie des sols désertiques, Encycl. Biol. (Paris) 21:1–23.Google Scholar
  93. Klemmedson, J. O., 1979, Ecological importance of actinomycete-nodulated plants in the western United States, Bot. Gaz. 140(Suppl.):S91-S96.CrossRefGoogle Scholar
  94. Klubek, B., and Skujinš, J., 1980, Heterotrophic N2-fixation in arid soil crusts, Soil Biol. Biochem. 12:229–236.CrossRefGoogle Scholar
  95. Klubek, B., Eberhardt, P. J., and Skujinš, J., 1978, Ammonia volatilization from Great Basin desert soils, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 107–129, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  96. Knight, W. G., and Skujinš, J., 1981, ATP concentration and soil respiration at reduced water potentials in arid soils, Soil Sci. Soc. Am. J. 45:657–660.CrossRefGoogle Scholar
  97. Kovda, V. A., Samoilova, E. M., Charley, J. L., and Skujinš, J., 1979, Soil processes in arid lands, in: Arid-land Ecosystems: Structure, Functioning and Management. Vol. 1 (D. W. Goodall, R. A. Perry, and K. M. W. Howes, eds.), pp. 439–470, Cambridge University Press, Cambridge.Google Scholar
  98. Kushner, D. J., 1978, Life in high salt and solute concentrations: Halophilic bacteria, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 317–368, Academic Press, London.Google Scholar
  99. Lange, O. L., Schulze, E. D., and Koch, W., 1970a, Experimentell-ökologische Untersuchungen an Flechten in Negev-Wüste. IL CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiod, Flora (Jena) Abt. B 159:38–62.Google Scholar
  100. Lange, O. L., Schulze, E. D., and Koch, W., 1970b, Experimentell-ökologische Untersuchungen an Flechten in Negev-Wüste. IIL CO2-Gaswechsel und Wasserhaushalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode, Flora (Jena) Abt. B 159:525–528.Google Scholar
  101. Lanyi, J. K. (reporter), 1979, Life at low water activities, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 125–135, Verlag Chemie, Weinheim.Google Scholar
  102. Larkin, J. M., and Dunigan, E., 1973, Myxobacteria from southwestern USA soils. Soil Sci. Soc. Am. Proc. 37:808–809.CrossRefGoogle Scholar
  103. Lindsey, D. L., Cress, W. A., and Aldon, E. G., 1977, The eff’ects of endomycorrhizae on growth of rabbitbrush, fourwing saltbush, and corn in coal mine spoil material, USDA Forest Service Research Note RM-343.Google Scholar
  104. Lipman, C. B., 1912, The distribution and activities of bacteria in soils of the arid regions, Univ. Calif Publ. Agric. Sci. 1:1–20.Google Scholar
  105. Llano, G. A. (ed.), 1972, Antarctic Terrestrial Biology. American Geophysical Union, Washington, D.C.Google Scholar
  106. Lobova, E. V., 1960, Pochvy pustynnoi zony SSSR. Akademiya Nauk, Moscow (translation: Lobova, E. V., 1967, Soils of the Desert Zone of the USSR. U.S. Department of Commerce, Springfield, Virginia).Google Scholar
  107. Long, H., and Miller, V. M., 1945, A new desert Coprinus, Mycologia 37:120–123.CrossRefGoogle Scholar
  108. Lyda, S. D., and Robinson, G. D., 1969, Soil respiratory activity and organic matter depletion in an arid Nevada soil.Soil Sci. Soc. Am. Proc. 33:92–94.CrossRefGoogle Scholar
  109. Lynn, R. L, and Cameron, R. E., 1973, The role of algae in crust formation and nitrogen cycling in desert soils, US/IBS Desert Biome Research Memorandum 73–40. Utah State University, Logan.Google Scholar
  110. MacGregor, A. N., and Johnson, D. E., 1971, Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci. Soc. Am. Proc. 35:843–844.CrossRefGoogle Scholar
  111. Mack, R. N., 1971, Mineral cycling in Artemisia tridentata. Ph.D. dissertation, Washington State University, Pullman.Google Scholar
  112. Mahendrappa, M. K., Smith, R. L., and Christiansen, A. T., 1966, Nitrifying organisms aff’ected by climatic region in western United States, Soil Sci. Soc. Am. Proc. 30:60–62.CrossRefGoogle Scholar
  113. Mahmoud, S. A. Z., Abou-El-Fadl, M., and El-Mofty, M. K., 1964, Studies on the rhizosphere microflora of a desert plant, Folia Microbiol. 9:1–8.CrossRefGoogle Scholar
  114. Marks, C. G., and Kozlowski, T. T. (eds.), 1973, Ectomycorrhizae—Their Ecology and Physiology. Academic Press, New York.Google Scholar
  115. Mayland, H. F., and Mcintosh, T. H., 1966, Availability of biologically fixed atmospheric nitrogen-15 to higher plants. Nature (London) 209:421–422.CrossRefGoogle Scholar
  116. McLaren, A. D, and Skujinš, J., 1967, The physical environment of microorganisms in soil, in: The Ecology of Soil Bacteria (T. R. G. Gray and D. Parkinson, eds.), pp. 3–24, Liverpool University Press, Liverpool.Google Scholar
  117. Meigs, P., 1953, World distribution of arid and semi-arid homoclimates.Reviews of Research on Arid Zone Hydrology, UNESCO Arid Zone Programme 1:203–209.Google Scholar
  118. Meigs, P., 1957, Arid and semi-arid climatic types of the world. Proceedings, 17th International Geographical Congress. 1952, 8th General Assembly, pp. 135–138.Google Scholar
  119. Miller, J. T., and Brown, I. C., 1938, Observations regarding soils of northern and central Mexico, Soil Sci. 46:427–451.CrossRefGoogle Scholar
  120. Miller, R. M., 1979, Some occurrences of vesicular-arbuscular mycorrhiza in natural and disturbed ecosystems of the Red Desert, Can. J. Bot. 57:619–623.CrossRefGoogle Scholar
  121. Montasir, A. H., Mostafa, M. A., and Elwan, S. H., 1958a, Desert rhizospheric microflora as a biotic factor in the development of Farsetia aegyptiaca. I. Development and cultural studies of fungi and bacteria in Farsetia rhizosphere, A’in Shams Sci. Bull. 3:83–98.Google Scholar
  122. Montasir, A. H., Mostafa, M. A., and Elwan, S. H., 1958b, Desert rhizospheric microflora as a biotic factor in the development of Farsetia aegyptiaea. II. Eff’ect of Farsetia root metabolites on conidial germination and mycelial growth of Aspergillus terreus and colonial growth of Baeillus subtilis, A’in Shams Sci. Bull. 3:99–110.Google Scholar
  123. Montasir, A. H., Mostafa, M. A., and Elwan, S. H., 1959a, Desert rhizospheric microflora as a biotic factor in the development of Farsetia aegyptiaea. III. Germination potentialities of Farsetia seeds in response to Aspergillus terreus and Bacillus subtilis metabolites obtained at difl’erent environmental and physiological conditions, A’in Shams Sci. Bull. 4:1–8.Google Scholar
  124. Montasir, A. H., Mostafa, M. A., and Elwan, S. H., 1959b, Desert rhizospheric microflora as a biotic factor in the development of Farsetia aegyptiaea. IV. Eff’ect of Aspergillus terreus and Baeillus subtilis metabolites obtained at varied physiological conditions on the relative vigour of Farsetia seedlings, A’in Shams Sci. Bull. 4:10–24.Google Scholar
  125. Montasir, A. H., Mostafa, M. A., and Elwan, S. H., 1959c, Desert rhizospheric microflora as a biotic factor in the development of Farsetia aegyptiaea. V. Nitrogen fixation and decomposition processes by Farsetia rhizospheric micro-organisms, A’in Shams Sci. Bull. 4:27–49.Google Scholar
  126. Mosse, B., Stribley, D. P., and Letacon, F., 1981, Ecology of mycorrhizae and mycorrhizal fungi, in: Advances in Microbial Ecology. Vol. 5 (M. Alexander, ed.), pp. 137–210, Plenum Press, New York.Google Scholar
  127. Mouchacca, J., and Joly, P., 1974, Étude de la mycoflore des sols arides de l’Égypte. I. Le genre Penicillium, Rev. Écol. Biol. Sol 11:67–88.Google Scholar
  128. Mouchacca, J., and Joly, P., 1976, Étude de la mycoflore des sols arides de l’Égypte. II. Le genre Aspergillus, Rev. Écol. Biol. Sol 13:293–313.Google Scholar
  129. Naguib, A. I., and Mouchacca, J. S., 1971, The mycoflora of Egyptian desert soils, Bull. Inst. Égypte 52:37–61.Google Scholar
  130. Nicolson, T. H., and Johnston, C., 1979, Mycorrhiza in the Gramineae. 3. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune, Trans. Br. Mycol. Soc. 72:261–268.CrossRefGoogle Scholar
  131. Nicot, J., 1955, Remarques sur les peuplements de micromycètes des sables désertiques, C. R. Acad. Sci. 240:2082–2084.Google Scholar
  132. Nicot, J., 1960, Some characteristics of the microflora in desert sands, in: The Ecology of Soil Fungi (D. Parkinson and J. S. Waid, eds.), pp. 94–97, Liverpool University Press, Liverpool.Google Scholar
  133. Oberholzer, P. C. J., 1936, The decomposition of organic matter in relation to fertility in arid and semi-arid regions, Soil Sci. 41:359–379.CrossRefGoogle Scholar
  134. O’Brien, R. T., 1978, Proteolysis and ammonification in desert soils, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 50–59, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  135. Payne, W. J., 1973, Reduction of nitrogenous oxides by microorganisms, Bacteriol. Rev. 37:409–452.PubMedGoogle Scholar
  136. Pochon, J., de Barjac, H., and Lajudie, J., 1957, Recherches sur la microflore des sols sahariens, Ann. Inst. Pasteur 92:833–836.Google Scholar
  137. Poma, E., 1955, La simbiosi micorrizica nelle piante annue, Allionia 2:429–442.Google Scholar
  138. Price, R. S., 1911, The roots of some North African desert grasses, New Phyto. 10:328–339.CrossRefGoogle Scholar
  139. Radwanski, S. A., and Wickens, G. E., 1967, The ecology of Acacia albida on mantle soils in Zalingei, Jebbel Marra, Sudan, J. Appl Ecol. 4:569–579.CrossRefGoogle Scholar
  140. Ranzoni, F. V., 1968, Fungi isolated in culture from soils of the Sonoran desert, Mycologia 60:356–371.PubMedCrossRefGoogle Scholar
  141. Rayss, T., 1959, Champignons hypogés dans les régions désertiques d’Israel, in: Omagiu lui Traian Sävulescu. pp. 655–659, Rumanian Academy of Sciences, Bucharest.Google Scholar
  142. Rayss, T., and Borut, S., 1958, Contributions to the knowledge of soil fungi in Israel, MycopathoL Mycol. Appl. 10:142–174.PubMedCrossRefGoogle Scholar
  143. Reeves, F. B., Wagner, D., Moorman, T., and Kiel, J., 1979, The role of endomycorrhizae in revegetation practices in the semiarid West. 1. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments, Am. J. Bot. 66:6–13.CrossRefGoogle Scholar
  144. Reichenbach, H., 1970, A new myxobacterium of the family Sorangaceae, Arch. Microbiol. 70:119–138.Google Scholar
  145. Renaut, J., and Sasson, A., 1970, Les cyanophycees du Maroc: Etude preliminaire de quelques biotopes de la region de Rabat, Bull. Soc. Sci. Nat. Phys. Maroc. 50:37–52.Google Scholar
  146. Rivkind, L., 1929, Étude des terres du Sahara, Arch. Inst. Pasteur Algérie 7:88–103.Google Scholar
  147. Rixon, A. J., 1971, Oxygen uptake and nitrification by soil within a grazed Atriplex vesicaria community in semi-arid rangeland, J. Range Manage. 24:435–439.CrossRefGoogle Scholar
  148. Rougieux, R., 1963, Actions antibiotiques et stimulantes de la truffe du desert (Terfezia boudieri Chatin), Ann. Inst. Pasteur 105:315–318.Google Scholar
  149. Rougieux, R., 1966, Contribution ä l’étude de Tactivité microbienne en sol désertique (Sahara), Thesis, University of Bordeaux.Google Scholar
  150. Rychert, R. C., and Skujinš, J., 1974a, Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin Desert, Soil Sci. Soc. Am. Proc. 38:768–771.CrossRefGoogle Scholar
  151. Rychert, R. C., and Skujinš, J., 1974b, Inhibition of algal-lichen crust nitrogen fixation in desert shrub communities, Abstr. Am. Soc. Microbiol. Annu. Meet.. Chicago, 1974:E20.Google Scholar
  152. Rychert, R. C., Skujinš, J., Sorensen, D., and Porcella, D., 1978, Nitrogen fixation by lichens and free-living microorganisms in deserts, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 20–30, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  153. Sanders, F. E., Mosse, B., and Tinker, P. B. (eds.), 1975, Endomycorrhizas. Academic Press, New York.Google Scholar
  154. Sasson, A., 1967, Recherches ecophysiologiques sur la flore bacterienne de sols de regions arides du Maroc, Thesis, University of Paris.Google Scholar
  155. Sasson, A., 1972, Microbial life in arid environments: Prospects and achievements, Ann. Arid Zone 2:67–91.Google Scholar
  156. Shilo, M. (ed.), 1979, Strategies of Microbial Life in Extreme Environments. Verlag Chemie, Weinheim.Google Scholar
  157. Skujinš, J., 1973, Dehydrogenase: An indicator of biological activities in arid soils. Bull. Ecol Res. Comm. (Stockholm) 17:235–241.Google Scholar
  158. Skujinš, J., 1975, Nitrogen dynamics in stands dominated by some major cool desert shrubs. IV. Inhibition by plant litter and limiting factors of several processes, US/IBP Desert Biome Res. Memo 75–33. Utah State University, Logan.Google Scholar
  159. Skujinš, J., 1977a, Comparison of biological processes in western deserts, US/IBP Desert Biome Res. Memo 77–20. Utah State University, Logan.Google Scholar
  160. Skujinš, J., 1977b, Soil microbiological and biochemical investigations, 1972–1976, in: Systems Analysis of the Presaharan Ecosystem of Southern Tunisia. Report No. 6 (G. Novikoff, F. H. Wagner, and M. S. Hajjaj, eds.), pp. 215–249, Utah State University, Logan.Google Scholar
  161. Skujinš, J., 1981, Nitrogen cycling in arid ecosystems, Ecol. Bull. (Stockholm) 33:477–491.Google Scholar
  162. Skujinš, J., and Klubek, B., 1978, Nitrogen fixation and cycling by blue-green algae-lichen crusts in arid rangeland soils, Ecol Bull. (Stockholm) 26:164–171.Google Scholar
  163. Skujinš, J., and Trujillo-y-Fulgham, P., 1978, Nitrification in Great Basin desert soils, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 60–74, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  164. Skujinš, J., and West, N. E., 1973, Nitrogen dynamics in stands dominated by some major cold desert shrubs, US/IBP Desert Biome Res. Memo. 73–35. Utah State University, Logan.Google Scholar
  165. Skujinš, J., McDonald, S. O., and Knight, W. G., 1983, Metal ion availability during biodegradation of waste oil in semiarid soils, Ecol. Bull. (Stockholm) 35:341–350.Google Scholar
  166. Snyder, J. M., and Wullstein, L. H., 1973, The role of desert cryptogams in nitrogen fixation, Am. Midi. Nat. 90:257–265.CrossRefGoogle Scholar
  167. Sorensen, D. L., and Porcella, D. B., 1974, Nitrogen erosion and fixation in cool desert soil-algal crusts in northern Utah, US/IBP Desert Biome Res. Memo. 74–37. Utah State University, Logan, Utah.Google Scholar
  168. Staffeldt, E. E., and Vogt, K. B., 1975, Mycorrhizae of desert plants, US/IBP Desert Biome Res. Memo. 75–37. Utah State University, Logan.Google Scholar
  169. Staley, J. T., Palmer, F., and Adams, J. B., 1982, Microcolonial fungi: Common inhabitants of desert rocks?, Science 215:1093–1095.PubMedCrossRefGoogle Scholar
  170. Stewart, W. D. P., 1967, Transfer of biologically fixed nitrogen in a sand slack region, Nature (London) 214:603–604.CrossRefGoogle Scholar
  171. Sullivan, M. J., Jr., 1942, The effect of field applications of organic matter on the properties of some Arizona soils, Ph.D. dissertation. University of Arizona, Tucson.Google Scholar
  172. Thornthwaite, C. W., 1948, An approach toward a rational classification of climate, Geogr. Rev. 38:55–94.CrossRefGoogle Scholar
  173. Thornton, H. G., 1953, Some problems presented by the microbiology of arid soils, in: Desert Research, Proceedings of the International Symposium. Jerusalem, May 1952, Special Publication No. 2, pp. 295–300, Research Council of Israel, Jerusalem.Google Scholar
  174. Tiedemann, A. R., and Klemmedson, J. O., 1973, Effect of mesquite on physical and chemical properties of the soil, J. Range Manage. 26:27–29.CrossRefGoogle Scholar
  175. Trappe, J. M., 1981, Mycorrhizae and productivity of arid and semiarid rangelands, in: Advances in Food Producing Systems for Arid and Semiarid Lands (J. Manassah and E. J. Briskey, eds.), pp. 581–599, Academic Press, New York.Google Scholar
  176. Vargues, H., 1953, Etude microbiologique de quelques sols sahariens en relation avec la présence d’Anabasis aretioides Coss et Moq, in: Desert Research, Proceedings of the International Symposium. Jerusalem, May 1952, Special Publication No. 2, pp. 318–324, Research Council of Israel, Jerusalem.Google Scholar
  177. Vincent, J. M., 1974, Root-nodule symbioses with Rhizobium. in: The Biology of Nitrogen Fixation (A. Quispel, ed.), pp. 266–307, North-Holland, Amsterdam.Google Scholar
  178. Virginia, R. A., Jarrell, W. M., and Franco-Vizcaino, E., 1982, Direct measurement of denitrification in a Prosopis (mesquite) dominated Sonoran desert ecosystem, Oecologia 53:120–122.CrossRefGoogle Scholar
  179. Vlek, P. L. G., Fillery, I. R. P., and Burford, J. R., 1981, Accession, transformation, and loss of nitrogen in soils of the arid region, Plant Soil 58:133–175.CrossRefGoogle Scholar
  180. Vogel, S., 1955, Niedere “Fensterpflanzen” in der südafrikanischen Wüste, Beitr. Biol Pflanz. 31:45–135.Google Scholar
  181. Vollmer, A. T., Au, F., and Bamberg, S. A., 1977, Observations on the distribution of microorganisms in desert soil, Great Basin Nat. 37:81–86.Google Scholar
  182. Wallace, A., and Romney, E. M., 1972, Approximate age of shrub clumps at the Nevada Test Site, in: Radioecology and Ecophysiology of Desert Plants at the Nevada Test Site (A. Wallace and E. M. Romney, eds.), pp. 307–309, U.S. Atomic Energy Commission, Office of Information Services, Springfield, Virginia.Google Scholar
  183. Wallace, A., Romney, E. M., Cha, J. W., and Soufi, S. M., 1974, Nitrogen transformations in Rock Valley and adjacent areas of the Mojave Desert, US/IBP Desert Biome Res. Memo. 74–36. Utah State University, Logan.Google Scholar
  184. Wallace, A., Romney, E. M., and Hunter, R. B., 1978, Nitrogen cycle in the northern Mojave Desert: Implications and predictions, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 207–218, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  185. Went, F. W., and Stark, N., 1968, The biological and mechanical role of soil fungi, Proc. Natl. Acad. Sci. U.S.A. 60:497–509.PubMedCrossRefGoogle Scholar
  186. Westerman, R. L., and Tucker, T. C., 1978, Denitrification in desert soils, in: Nitrogen in Desert Ecosystems (N. E. West and J. Skujinš, eds.), pp. 75–106, Dowden, Hutchinson, and Ross, Stroudsburg, Pennsylvania.Google Scholar
  187. Williams, S. E., and Aldon, E. G., 1976, Endomycorrhizal (vesicular-arbuscular) associations of some arid zone shrubs. Southwest Nat. 20:437–444.CrossRefGoogle Scholar
  188. Williams, W. D. (ed.), 1981, Salt Lakes. W. Junk, The Hague.Google Scholar
  189. Wullstein, L. H., 1980, Nitrogen fixation associated with rhizosheaths of Indian ricegrass used in the stabilization of the Slick Rock, Colorado, tailings pile, J. Range Manage. 33:204–206.CrossRefGoogle Scholar
  190. Wullstein, L. H., and Pratt, S. A., 1981, Scanning electron microscopy of rhizosheaths of Oryzopis hymenoides. Am. J. Bot. 68:408–419.CrossRefGoogle Scholar
  191. Wullstein, L. H., Bruening, M. L., and Bollen, W. B., 1979, Nitrogen fixation associated with sand grain root sheaths (rhizosheaths) of certain xeric grasses, Physiol. Plant. 48:1–4.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Skujinš
    • 1
  1. 1.Department of Biology and Ecology CentersUtah State UniversityLoganUSA

Personalised recommendations