Advertisement

The Polarization Resistance Technique for Measuring Corrosion Currents

  • Florian Mansfeld

Abstract

In 1938 Wagner and Traud1 published a paper: “Concerning the Evaluation of Corrosion Reactions by Superposition of Electrochemical Partial Reactions and Concerning the Potential Formation on Mixed Electrodes.” This paper is today considered the classical paper on mixed potential theory, which postulates that, even without the assumption of the existence of local anodes and cathodes, one can explain corrosion reactions by assuming that cathodic and anodic partial reactions occur at the phase boundary metal/electrolyte in constant change with statistical distribution of location and time of the individual reaction. Wagner and Traud showed further that under certain conditions (yielding certain forms of the partial potential-current curves) it is possible to calculate the rate of a given reaction using electrochemical measurements. These principles were then applied to the dissolution rate of zinc amalgam in acid solutions. Good agreement was found between corrosion rates calculated from polarization curves using the technique, which today is called “Tafel slope extrapolation” and from the amount of hydrogen evolved. These experimental results were considered proof for the general postulations of the mixed potential theory.

Keywords

Corrosion Rate Polarization Curve Corrosion Potential Polarization Resistance Corrosion Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Related to the Polarization Resistance Technique

  1. 1.
    C. W. Wagner and W. Traud, Z. Elektrochem. 44, 391 (1938).Google Scholar
  2. 2.
    K. F. Bonhoeffer and W. Jena, Z. Elektrochem. 55, 151 (1951).Google Scholar
  3. 3.
    E. J. Simmons, Corrosion 11, 255t (1955).Google Scholar
  4. 4.
    R. V. Skold and T. E. Larson, Corrosion 13, 139t (1957).Google Scholar
  5. 5.
    M. Stem and A. L. Geary, J. Electrochem. Soc. 104, 56 (1957).CrossRefGoogle Scholar
  6. 6.
    M. Stern and R. M. Roth, J. Electrochem. Soc. 104, 390 (1957).CrossRefGoogle Scholar
  7. 7.
    M. Stern, Corrosion 14, 440t (1958).Google Scholar
  8. 8.
    M. Stern and E. D. Weisert, Proc. ASTM 59, 1280 (1959).Google Scholar
  9. 9.
    H. Kaesche, Z. Elektrochem. 63, 492 (1959).Google Scholar
  10. 10.
    A. C. Makrides, J. Electrochem. Soc. 107, 869 (1960).CrossRefGoogle Scholar
  11. 11.
    W. A. Mueller, Can. J. Chem. 38, 576 (1960).CrossRefGoogle Scholar
  12. 12.
    S. Evans and E. L. Koehler, J. Electrochem. Soc. 108, 509 (1961).CrossRefGoogle Scholar
  13. 13.
    E. Brauns and W. Schwenk, Werkst. Korrosion 12, 73 (1961).CrossRefGoogle Scholar
  14. 14.
    E. Brauns and W. Schwenk, Archiv. Eisenhütt. 32, 387 (1961).Google Scholar
  15. 15.
    S. Mennenöh and H. J. Engell, Stahl Eisen 82, 1796 (1962).Google Scholar
  16. 16.
    A. C. Makrides, Corrosion 18, 338t (1962).Google Scholar
  17. 17.
    W. Schwenk and H. E. Buehler, Corr. Sci. 3, 261 (1963).CrossRefGoogle Scholar
  18. 18.
    T. J. Butler and P. R. Carter, Electrochem. Tech. 1, 22 (1963).Google Scholar
  19. 19.
    R. A. Legault and M. S. Walker, Corrosion 19, 222t (1963).Google Scholar
  20. F. M. Donahue and K. Nobe, in 2nd Int. Congress on Metallic Corrosion, New York, 1963, p. 916, NACE.Google Scholar
  21. 21.
    G. A. Marsh, in Ref. 20, p. 936.Google Scholar
  22. 22.
    J. M. Kilpatrick, Oil Gas J. 62, 155 (1964).Google Scholar
  23. 23.
    P. Neufeld, Corr. Sci. 4, 245 (1964).CrossRefGoogle Scholar
  24. 24.
    T. J. Butler and P. R. Carter, Electrochem. Tech. 3, 157 (1965).Google Scholar
  25. 25.
    A. Cohen and R. V. Jelinek, Corrosion 22, 39 (1966).Google Scholar
  26. 26.
    F. P. A. Robinson and D. J. DuPlessis, Corrosion 22, 117 (1966).Google Scholar
  27. 27.
    D. A. Jones and N. D. Greene, Corrosion 22, 198 (1966).Google Scholar
  28. 28.
    R. Annand, Corrosion 22, 215 (1966).Google Scholar
  29. 29.
    H. Grubitsch, F. Hilbert, and R. Sammer, Werkst. Korrosion 17, 760 (1966).CrossRefGoogle Scholar
  30. 30.
    L. I. Antropov, M. A. Gerasimenko, and Yu. S. Gerasimenko, Prot. Met. 2, 98 (1966).Google Scholar
  31. 31.
    M. Prazak and K. Bartofi, Corr. Sci. 7, 159 (1967).CrossRefGoogle Scholar
  32. 32.
    T. P. Hoar, Corr. Sci. 7, 455 (1967).CrossRefGoogle Scholar
  33. 33.
    B. E. Wilde, Corrosion 23, 331 (1967).Google Scholar
  34. 34.
    B. E. Wilde, Corrosion 23, 379 (1967).Google Scholar
  35. 35.
    E. Fot and E. Heitz, Werkst. Korrosion 18, 529 (1967).CrossRefGoogle Scholar
  36. 36.
    V. J. Colangelo, N. D. Greene, D. B. Kettelkamp, H. Alexander, and C. J. Campbell, J. Biomed. Mater. Res. 1, 405 (1967).CrossRefGoogle Scholar
  37. 37.
    T. B. Fielden and G. Stockton, Br. Corr. J. 2, 87 (1967).CrossRefGoogle Scholar
  38. 38.
    J. C. Rowlands and M. N. Bentley, Br. Corr. J. 2, 92 (1967).CrossRefGoogle Scholar
  39. 39.
    E. McCafferty and A. C. Zettlemoyer, J. Phys. Chem. 71, 2444 (1967).CrossRefGoogle Scholar
  40. 40.
    T. J. Butler, R. M. Hudson, and C. J. Warning, Electrochem. Tech. 6, 227 (1968).Google Scholar
  41. 41.
    M. Praak, Werkst. Korrosion 19, 845 (1968).CrossRefGoogle Scholar
  42. 42.
    R. F. Steigerwald, Corrosion 24, 1 (1968).Google Scholar
  43. 42a.
    M. S. Walker and W. D. France, Jr., Mater Prot. 8(9), 47 (1969).Google Scholar
  44. 43.
    R. Paul, and W. L. Shirley, Mater. Prot. 8(1), 25 (1969).Google Scholar
  45. 44.
    H. Feitler and C. R. Townsend, Mater. Prat. 8(3), 19 (1969).Google Scholar
  46. 45.
    M. E. Indig and C. Groot, Corrosion 25, 455 (1969).Google Scholar
  47. 46.
    S. Barnartt, Corr. Sci. 9, 145 (1969).CrossRefGoogle Scholar
  48. 46a.
    D. A. Jones and N. D. Greene, Corrosion 25, 367 (1969).Google Scholar
  49. 47.
    H. Feitler, Mater. Perf. 9(10), 37 (1970).Google Scholar
  50. 48.
    P. Neufeld and E. D. Queenan, Br. Corr. J. 5, 72 (1970).CrossRefGoogle Scholar
  51. 49.
    G. Baudo and L. Guiliani, Werkst. Korrosion 21, 332 (1970).CrossRefGoogle Scholar
  52. 50.
    W. J. Schwerdtfeger, Mater. Res. Stand. 10, 22 (1970).Google Scholar
  53. 51.
    J. Weber, Schweiz. Archiv 36, 29 (1970).Google Scholar
  54. 52.
    M. E. Indig and C. Groot, Corrosion 26, 171 (1970).Google Scholar
  55. 53.
    W. Hübner, in Proc. 6th Scand. Corrosion Congress 13–1 (1971).Google Scholar
  56. 53a.
    G. Trabanelli, G. Mantovani, F. Zucchi, and G. Gilli, Zucker 24, 268 (1971).Google Scholar
  57. 54.
    J. C. Cessna, Corrosion 27, 244 (1971).Google Scholar
  58. 54a.
    J. Pagetti and J. Talbot, Corr. Sci. 11, 65 (1971).CrossRefGoogle Scholar
  59. 55.
    K. B. Oldham and F. Mansfeld, Corrosion 27, 434 (1971).Google Scholar
  60. 56.
    F. Mansfeld and K. B. Oldham, Corr. Sci. 11, 787 (1971).CrossRefGoogle Scholar
  61. 57.
    M. Praiak and B. Eremias, Corr. Sci. 12, 463 (1972).CrossRefGoogle Scholar
  62. 58.
    M. Praiak and B. Eremias, Corr. Sci. 12, 891 (1972).CrossRefGoogle Scholar
  63. 59.
    D. A. Jones, Corrosion 28, 180 (1972).Google Scholar
  64. 60.
    K. B. Oldham and F. Mansfeld, Corrosion 28, 180 (1972).Google Scholar
  65. 61.
    D. A. Jones, Ind. Eng. Chem. Prod. Res. Develop. 11, 12 (1972).Google Scholar
  66. 62.
    I. Epelboin, M. Keddam, and H. Takenouti, J. Appl. Eleetroehem. 2, 71 (1972).CrossRefGoogle Scholar
  67. 63.
    J. C. Rowlands and M. N. Bentley, Br. Corros. J. 7, 42 (1972).CrossRefGoogle Scholar
  68. 64.
    J. Hissel and R. Scimar, Centre Beige dEtude Doeum. Eaux 339, 70 (1972).Google Scholar
  69. 65.
    J. Devay, F. Janaszik, L. Mészaros, and F. Horkay, Acta. Chim. Acad. Sci. Hung., Tomus 74, 199 (1972).Google Scholar
  70. 66.
    A. C. Makrides, Corrosion 29, 148 (1973).Google Scholar
  71. 67.
    A. C. Makrides, Corrosion 29, 180 (1973).Google Scholar
  72. 68.
    A. C. Makrides and F. Cocks, Corrosion 29, 223 (1973).Google Scholar
  73. 69.
    F. Mansfeld, Corrosion 29, 397 (1973).Google Scholar
  74. 70.
    F. Mansfeld, J. Eleetroehem. Soc. 120, 515 (1973).CrossRefGoogle Scholar
  75. 71.
    G. Palombarini, L. Felloni, and G. P. Cammarota, Corrosion 29, 245 (1973).Google Scholar
  76. 72.
    R. L. LeRoy, Corrosion 29, 272 (1973).Google Scholar
  77. 73.
    H. C. Albaya, O. A. Cobo, and J. B. Bessone, Corr. Sci. 13, 287 (1973).CrossRefGoogle Scholar
  78. 74.
    J. C. Reeve and G. Bech-Nielsen, Corr. Sci. 13, 351 (1973).CrossRefGoogle Scholar
  79. 75.
    B. Eremias and M. Pra2ak, Corr. Sci. 13, 907 (1973).CrossRefGoogle Scholar
  80. 76.
    D. W. Bird, Corr. Sci. 13, 913 (1973).CrossRefGoogle Scholar
  81. 77.
    C. A. Smith, K. G. Compton, and F. C. Foley, Corr. Sci. 13, 677 (1973).CrossRefGoogle Scholar
  82. 78.
    C. Loss and E. Heitz, Werkst. Korrosion 24, 38 (1973).CrossRefGoogle Scholar
  83. 79.
    J. Dévay, L. Mészaros, F. Janaszik, and S. S. Abdel Rehim, Acta Chim. Acad. Sci. Hung., Tomus 75, 389 (1973).Google Scholar
  84. 80.
    J. Dévay, R. Ratkovics-Schuetz, and L. Mészaros, Acta Chim. Acad. Sci. Hung., Tomus 76, 21 (1973).Google Scholar
  85. 80a.
    R. L. Cowan, m Corrosion/73 Symposium, Anaheim, Calif., 1974, Paper No. 61.Google Scholar
  86. 81.
    F. Mansfeld, Corrosion 30, 92 (1974).Google Scholar
  87. 82.
    F. P. Ijsseling, Corr. Sci. 14, 97 (1974).CrossRefGoogle Scholar
  88. 83.
    J. Hissel, Corr. Sci 14, 293 (1974).CrossRefGoogle Scholar
  89. 84.
    M. Praak, Werkst. Korrosion 25, 104 (1974).CrossRefGoogle Scholar
  90. 85.
    R. L. LeRoy, Corrosion 31, 173 H975).Google Scholar
  91. 86.
    M. S. Walker, Mater. Perf. 13(7), 37 (1974).Google Scholar
  92. 87.
    D. A. Carter, A. Weisstuch, and W. F. Maguire, Mater. Perf. 13(8), 16 (1974).Google Scholar
  93. 87a.
    J. A. Manning and S. V. Carleton, in Corrosion/74 Symposium, Chicago, 1974, Paper No. 140.Google Scholar
  94. 88.
    W. D. France, Jr., M. S. Walker, and H. L. Craig, Jr. eds., in Corrosion/73 T-3L Symposium, Anaheim, Calif., 1973 ASTM Stand. News 1(11), 32, 1973.Google Scholar
  95. 89.
    F. Mansfdd, Corrosion 30, 320 (1974).Google Scholar
  96. 90.
    D. A. Jones and R. Bandyopadhya, Corrosion 32, 126 (1976).Google Scholar
  97. 91.
    J. Tacussel and T. J. Fombon, in 25th Meeting of ISE, Brighton, England, 1974.Google Scholar
  98. 92.
    H. J. Engell, Archiv. Eisenhütt. 29, 553 (1958).Google Scholar
  99. 93.
    S. Barnartt, Electrochim. Acta 15, 1313 (1970).CrossRefGoogle Scholar
  100. 94.
    S. Barnartt, Corrosion 27, 467 (1971).Google Scholar
  101. 95.
    K. B. Oldham and F. Mansfeld, Corr. Sci. 13, 813 (1973).CrossRefGoogle Scholar
  102. 96.
    G. W. Walter, Corr. Sci. 15, 47 (1975).CrossRefGoogle Scholar
  103. 97.
    C. G. Arnold, in Cooling Tower Institute Meeting, 1975, Houston, Tex.Google Scholar
  104. 98.
    C. R. Townsend, in Corrosion/74 Symposium, Chicago, 1974, Paper No. 64.Google Scholar
  105. 99.
    D. B. Matthews, Aust. J. Chem. 28, 243 (1975).CrossRefGoogle Scholar

Related References

  1. 100.
    H. Kaesche, Z.Metallkunde 61, 94 (1970); Die Korrosion der Metalle, Springer-Verlag, Berlin, (1966).Google Scholar
  2. 101.
    K. J. Vetter, Electrochemical Kinetics, Academic Press, New York (1967).Google Scholar
  3. 102.
    J. P. Hoare, The Electrochemistry of Oxygvn, Interscience Publishers, New York (1968).Google Scholar
  4. 103.
    J. A. V. Butler and G. Armstrong, J. Chem. Soc. 56, 743 (1934).CrossRefGoogle Scholar
  5. 104.
    J. P. G. Farr and N. A. Hampson, J. ElectroanaL Chem. 13, 433 (1967).CrossRefGoogle Scholar
  6. 105.
    F. Mansfeld and S. Gilman, J. Electrochem. Soc. 117, 1328 (1970).CrossRefGoogle Scholar
  7. 106.
    F. Mansfeld, Corrosion 32, 143 (1976).Google Scholar
  8. 107.
    D. A. Jones, Corr. Sei. 8, 19 (1968).CrossRefGoogle Scholar
  9. 108.
    G. L. Booman and W. B. Holbrook, Anal. Chem. 34, 1793 (1963).CrossRefGoogle Scholar
  10. 109.
    G. Lauer and R. A. Osteryoung, Anal. Chem. 38, 1106 (1966).CrossRefGoogle Scholar
  11. 110.
    F. Mansfeld, R. L. Myers, and G. Lauer, Instrumentation for Corrosion Studies in Low Conductivity Media, Technical Report SCTR-73–7, Science Center, Rockwell International, 1973.Google Scholar
  12. 111.
    R. R. Schroeder, in Computers in Chemistry and Instrumentation, Vol. 2, Electrochemistry, M. Dekker, New York (1972), Edited by J. S. Mattson, H. B. Mark, Jr. and H. C. MacDonald, Jr.Google Scholar
  13. 112.
    D. Altura, F. Mansfeld, J. V. Kenkel, and L. P. Streett, Control of Hydrogen Pickup During Chemical Processing, Technical Report, Rockwell International (in preparation).Google Scholar
  14. 113.
    Ja. M. Kolotyrkin and G. M. Florianovich, Z. Phys. Chem. 231, 145 (1966).Google Scholar
  15. 114.
    G. M. Florianovich, T. R. Agladze, L. A. Sokolova, and F. M. Mikheeva, Sov. Electrochem. 9, 936 (1973).Google Scholar
  16. 115.
    J. A. Von Fraunhofer and C. H. Banks, Potentiostat and Its Applications, Butterworths, London (1972).Google Scholar
  17. 116.
    F. Mansfeld and P. Stocker, “Instrumentation for On-Line Control of Pickling Baths”, unpubhshed.Google Scholar
  18. 117.
    R. J. Chin and K. Nobe, J. Electrochem. Soc. 118, 545 (1971).CrossRefGoogle Scholar
  19. 118.
    S. Barnartt, J. Electrochem. Soc. 119, 812 (1972).CrossRefGoogle Scholar
  20. 119.
    F. Mansfeld and J. V. Kenkel, Corr. Sei. (in press).Google Scholar
  21. 120.
    D. T. Sawyer and J. L. Roberts, Jr., Experimental Electrochemistry for Chemists, John Wiley and Sons, New York (1974).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Florian Mansfeld
    • 1
  1. 1.Science CenterRockwell InternationalThousand OaksUSA

Personalised recommendations