Advertisement

Hydrogen Embrittlement and Stress Corrosion Cracking of Uranium and Uranium Alloys

  • Nicholas J. Magnani

Abstract

The principal reason for interest in uranium is the nuclear behavior of the 235 isotope. However, there has also been interest in depletedt uranium because of its high density (p = 19.1 g/cm3) and in some cases its structural properties. Because depleted uranium is a by-product of enriched nuclear fuel, it is less expensive than any other high-density material. Tungsten, with a density of 19.3 g/cm3, not only has a higher raw material cost but also is more expensive to fabricate. Other elements with densities above 15 g/cm3. Re, Os, Ir, Pt, Au, and Pu are very expensive. Therefore, in addition to their nuclear applications, uranium and uranium alloys have been used for ballast and counterweights where space is limited such as in aircraft and missiles, for non-nuclear ordnance as an armor penetrator, and for radiation shielding. A uranium radiation shield not only occupies less volume than an equivalent lead shield but can weigh two-thirds as much. Because of their mechanical properties uranium alloys have a great deal of potential as shipping container-shielding for spent reactor fuels where safety requires the containers remain intact in an accident.

Keywords

Stress Corrosion Stress Corrosion Crack Hydrogen Embrittlement Intergranular Crack Precracked Specimen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. O. Wilkinson, Uranium Metallurgy, Vol. II, Uranium Corrosion and Alloys, Interscience, New York (1966).Google Scholar
  2. 2.
    H. L. Yakel, Crystal Structures of Transition Phases Formed in U 16.60 a/o Nb 5.64 a o Zr Alloys, J. Nucl. Mater. 33, 286–295 (1969).CrossRefGoogle Scholar
  3. 3.
    K. Tangri and G. I. Williams, Metastable Phases in the Uranium-Molybdenum System and Their Origin, J. Nucl. Mater. 4, 226–233 (1961).CrossRefGoogle Scholar
  4. 4.
    M. Anagnostidis, M. Colombie, and H. Monti, Phases Metastables dans les Alliages Uranium-Niobium, J. Nucl. Mater. 11, 67–76 (1964).CrossRefGoogle Scholar
  5. 5.
    R. F. Hills, B. R. Butcher, and B. W. Howlett, The Efifect of Cooling Rate on the Decomposition of the y-Phase in Uranium-Zirconium Alloys, J. Nucl. Mater. 16, 25–38 (1965).CrossRefGoogle Scholar
  6. 6.
    R. Bashiwitz, M. Colombie, and M. Foure, Annealing of Metastable Orthorhombic Phases of Uranium-Titanium Containing 4.5 and 9.5% Titanium, J. Nucl. Mater. 28, 246–256 (1968).CrossRefGoogle Scholar
  7. 7.
    K. H. Eckelmeyer, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.), Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  8. 8.
    G. L. Powell and J. B. Condon, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.). Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  9. 9.
    P. Cotterill, The Hydrogen Embrittlement of Metals, Progr. Mater. Sei. 9, 201–301 (1961).Google Scholar
  10. 10.
    C. J. Beevers and G. T. Newman, Hydrogen Embrittlement in Uranium, J. Nucl. Mater. 23, 10–18(1967).Google Scholar
  11. 11.
    H. Inouye and A. C. Schafifhauser, Low-Temperature Ductility and Hydrogen Embrittlement of Uranium-A Literature Review. Oak Ridge National Laboratory Report ORNL-TM-2563 (July 1969).Google Scholar
  12. 12.
    P. Adamson, S. Orman, and G. Picton, The Effects of Hydrogen on the Tensile Properties of Uranium When Tested in Different Environments, J. Nucl. Mater. 33, 215–224 (1969).CrossRefGoogle Scholar
  13. 13.
    G. S. Hanks, J. M. Taub, D. T. Doll, T. J. Jones, and V. Vigil, The Effect of AnneaHng Media on the Mechanical Properties of Uranium, Los Alamos Scientific Laboratory Report 1619 (Aug. 1963).Google Scholar
  14. 14.
    W. D. Davis, Solubility, Determination, Diffusion and Mechanical Effects of Hydrogen in Uranium, Knolls Atomic Power Laboratory Report KAPL-1548 (Aug. 1956).CrossRefGoogle Scholar
  15. 15.
    R. Smith, Atomic Energy Research Establishment Report AWRE-M/R-2700 (1959).Google Scholar
  16. 16.
    G. A. Whitlow and R. Willows, The Effect of Humidity on the Ductility of Uranium, Atomic Weapons Research Estabhshment Report AWRE 0–46/66 (1966).Google Scholar
  17. 17.
    A. N. Hughes, S. Orman, and G. Picton, Environmental Factors Affecting the Mechanical Properties of Uranium. 1. The Effect of Water Vapor, J. Nucl. Mater. 33, 159–164 (1969).CrossRefGoogle Scholar
  18. 18.
    N. Hughes, S. Orman, G. Picton, and M. A. Thome, Environmental Factors Affecting the Mechanical Properties of Uranium.’2. The Mechanisms of Water Embrittlement of Uranium, J. Nucl. Mater. 33, 165–172 (1969).CrossRefGoogle Scholar
  19. 19.
    S. Orman, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.), Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  20. 20.
    N. J. Magnani, The Reaction of Uranium and Its Alloys with Water Vapor at Low Temperatures, Sandia Laboratories Report SAND-74–0145 (Aug. 1974).Google Scholar
  21. 21.
    R. J. Jackson, Effect of Humidity on Tensile Ductihty of Uranium-Titanium Alloys, Dow Chemical, Rocky Flats Division Report RFP-2048 (1972).Google Scholar
  22. 22.
    H. R. Johnson, J. W. Dini, and S. W. Zehr, in Hydrogen in Metals (L. M. Bernstein and A. W. Thompson, eds.), ASM Materials/Metalworking Technology Series Vol. 2, pp. 325–343, American Society of Metals (1974).Google Scholar
  23. 23.
    N. J. Magnani, The Effects of Environment, Orientation, and Strength Level on the Stress Corrosion Behavior of U-0.75 wt% Ti, J. Nucl. Mater. 54, 108–116 (1974).CrossRefGoogle Scholar
  24. 24.
    N. J. Magnani, The Wedging Action of UH3 During Slow Crack Growth in U-0.75 wt % Ti, Corrosion 31, 337–338 (1975).Google Scholar
  25. 25.
    N. J. Magnani, The Effects of the Environment on the Cracking Behavior of Selected Uranium Alloys, NACE Corrosion 72, Mar., 1972, St. Louis, Mo., Paper 58; Sandia Laboratories Report SCR-72–2661 (Mar. 1972).Google Scholar
  26. 26.
    D. McLaughlin and L. L. Stephenson, Private communication, Sandia Laboratories, Albuquerque, N.M. (1973).Google Scholar
  27. 27.
    W. F. Czyrklis and M. Levy, Stress Corrosion Cracking Behavior of Uranium Alloys, Corrosion 30, 181–197 (1974).Google Scholar
  28. 28.
    M. Levy, Private communication, Army Materials and Mechanics Research Center, Watertown, Mass. (Dec. 1973).Google Scholar
  29. 29.
    N. J. Magnani, The Stress Corrosion Cracking Behavior of Two Uranium Alloy Armor Penetrator Materials, Sandia Laboratories Report SLA-74–0304 (Aug. 1974).Google Scholar
  30. 30.
    M. W. Burkart, I. Cohen, and R. K. McGeary in Advances in Nuclear Engineering, Vol. 2, p. 197–208, Pergamon, New York (1958).Google Scholar
  31. 31.
    J. W. Pridgeon, Stress Corrosion Cracking in Uranium-Molybdenum Alloys, Union Carbide Y-12 Plant Report Y-1417 (May 1963).Google Scholar
  32. 32.
    A. W. Peterson and R. R. Vandervoort, Stress-Cracking in the Uranium 10 w/o Molybdenum Alloy, Lawrence Radiation Laboratory Report UCRL-7769 (May 1964).Google Scholar
  33. 33.
    S. A. Hoenig and H. Sulsona, A Field Emission Microscope Investigation of the Effects of Ambient Atmospheres on the Stress-Corrosion Cracking of Uranium-Molybdenum Alloys, U.S. Government Research and Development Report 68(14), 79 (1968).Google Scholar
  34. 34.
    S. Orman and G. Picton, The Stress-Corrosion Cracking of Uranium-Molybdenum Alloys, Atomic Weapons Research Establishment Report 015/70 (1970).Google Scholar
  35. 35.
    A. M. Nomine, D. Bedere, and D. Miannay, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.). Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  36. 36.
    M. Nomine, D. Bedere, R. Robin, and D. Miannay, Mechanical Study of the Stress Corrosion of a U-10 Mo Alloy, in Colloque sur la Rupture de Materiaux, Grenoble (Jan. 1972), Sandia Laboratories Translation SC-T-722510 (May 1972).Google Scholar
  37. 37.
    A. W. Peterson, A Stress-Cracking Study of a Gamma Extruded U-8 w/o Mo-0.50 w/o Ti Alloy, Lawrence Radiation Laboratory Report UCRL-14132 (Apr. 1965).Google Scholar
  38. 38.
    M. Nomine, D. Bedere, and D. Miannay, Mechanical Quantities Associated with Stress Corrosion of the U-10 Mo Alloy, in Colloque sur la Rupture de Materiaux, Grenoble (Jan. 1972), Sandia Laboratories Translation SC-T-722508 (May 1972).Google Scholar
  39. 39.
    R. Willows and G. A. Whitlow, High Strength Uranium Alloys: Mechanical Properties, Atomic Weapons Research Establishment Report AWRE 0–34/70 (May 1970).Google Scholar
  40. 40.
    G. A. Whitlow, Stress Corrosion of Uranium Alloys, Atomic Weapons Research Establishment Report AWRE 0–49/66 (July 1966).Google Scholar
  41. 41.
    S. W. Zehr, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.) Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  42. 42.
    N. J. Magnani and H. Romero, The Reaction of Water Vapor with U-7i wt% Nb-2i wt% Zr and U-41 wt% Nb, Sandia Laboratories Report SC-RR-720635 (Sept. 1972).Google Scholar
  43. 43.
    N. J. Magnani, Stress Corrosion Cracking in Quenched and in Underaged U-6 wt % Nb, Sandia Laboratories Report SAND-75–0191 (June 1975).Google Scholar
  44. 44.
    J. M. Macki and R. L. Kochen, The Stress-Corrosion Cracking Behavior of the U-4.2 wt% Nb Alloy Aged 80 Hours at 260°C, Dow Chemical, Rocky Flats Division Report RFP-1824 (Mar. 1972).Google Scholar
  45. 45.
    N. J. Magnani, to be published.Google Scholar
  46. 46.
    N. J. Magnani, The Effect of Chloride Ions on the Cracking Behavior of U-7.5 wt % Nb-2.5 wt% Zr and U-4.5 wt% Nb, J. Nucl Mater. 42, 271–277 (1972).CrossRefGoogle Scholar
  47. 47.
    J. M. Macki and R. L. Kochen, The Stree-Corrosion Cracking of Underaged and Overaged U-2.3 wt% Nb in an Aqueous Chloride Environment, Dow Chemical, Rocky Flats Division Report RFP-1904 (August 1972).Google Scholar
  48. 48.A. R. Miller, The Stress Corrosion Cracking of U-Nb alloys in air, submitted to Corrosion. Google Scholar
  49. 49.
    J. W. Koger, Stress-Corrosion Cracking of Uranium Alloys, Union Carbide Y-12 Plant Report Y-DA-5624 (Dec. 1973).Google Scholar
  50. 50.
    D. McLaughlin, L. L. Stephenson, and C. J. Miglionico, Influence of aging time and temperature on the susceptibility of y-quenched U-5 wt% Nb alloy to stress corrosion cracking. Corrosion 28, 35–38 (1972).Google Scholar
  51. 51.
    L. L. Stephenson, A Survey of Factors Which Influence Stress Corrosion Crack Initiation in Several Uranium Base Alloys, Sandia Laboratories Report SC-DR-70–718 (Oct. 1970).Google Scholar
  52. 52.
    A. Vaughn and D. I. Phalen, Summary Report on Mechanisms of Failure in Mulberry Alloy (U-7.5% Nb-2.5% Zr), Battelle Memorial Institute (Oct. 1969).Google Scholar
  53. 53.
    L. J. Weirick and C. W. Schoenfelder, The Effect of Oxygen, Chloride Ions and Water Vapor on Crack Initiation in U-7i wt% Nb-2i wt% Zr, Corrosion 30, 169–174 (1974).Google Scholar
  54. 54.
    N. J. Magnani, H. Romero, and C. J. Mighonico, A Study of the Stress Corrosion Cracking Behavior of Mulberry (U-7.5% Nb-2.5% Zr), Sandia Laboratories Report SC-RR-70–371 (May 1970).Google Scholar
  55. 55.
    A. R. Miller, Effect of Relative Humidity on the Stress Corrosion Cracking of U-7.5% Nb-2.5% Zr alloy. Corrosion 30, 177–178 (1974).Google Scholar
  56. 56.
    J. S. Bullock IV and J. B. Condon, Electrochemical and Other Studies of a Uranium Alloy Exhibiting Stress-Corrosion Cracking, Union Carbide Y-12 Plant Report Y-1821 (Feb. 1972).Google Scholar
  57. 57.
    J. W. Koger, Variables Which Influence the Stress-Corrosion Cracking of Uranium-7.5 Niobium-2.5 Zirconium Alloy, Union Carbide Y-12 Plant Report Y-1965 (Jan. 1975).Google Scholar
  58. 58.
    L. J. Weirick, The Effect of Heat Treatment upon the Stress-Corrosion Cracking of Mulberry (U-7.5 Nb-2.5 Zr), Corrosion 31, 5–14 (1975).Google Scholar
  59. 59.
    A. W. Peterson and W. J. Steele, Delayed Cracking Study in U-7.5% Nb-2.5% Zr, Lawrence Radiation Laboratory Report UCID-15256 (Dec. 1967).Google Scholar
  60. 60.
    Chen, The Stress-Corrosion Cracking Behavior of Uranium-7.5% Nb-2.5% Zr, Master’s Thesis, New Mexico Institute of Mining & Technology, Socorro, N. M. (Oct. 1974).Google Scholar
  61. 61.
    A. Colmenares, in Progress in Solid State Chemistry (J. O. McCaldin and G. Somorjai, eds.), Vol. 9, Pergamon, Elmsford, N.Y. (1974).Google Scholar
  62. 62.
    J. V. Cathcart, in Physical Metallurgy of Uranium Alloys (J. J. Burke, D. A. Colling, A. E. Gorum, and J. Greenspan, eds.), Brook Hill, Chestnut Hill, Mass. (1975).Google Scholar
  63. 63.
    N. J. Magnani, Stress Corrosion Cracking of Mulberry, Corrosion 10, 406–408 (1970).Google Scholar
  64. 64.
    M. Levy, C. V. Zabielsky, and G. N. Sklover, Corrosion Behavior of Depleted Uranium-Titanium and Uranium-Molybdenum Alloys, Army Materials and Mechanics Research Center Report AMMRC-TR-73-n (Mar. 1973).Google Scholar
  65. 65.
    J. Brettle and S. Orman, Stress Corrosion Testing Using a Potentiostatic Dynamic Strain Technique, Atomic Weapons Research Establishment Report AWRE 0 22/73 (Apr. 1973).Google Scholar
  66. 66.
    M. A. Beaubron, Influence de la Teneur en Carbone sur la Corrosion sous Tension d’un Alliage U-Mo a 10% en Poids Mo dans I’air Humide a 20°C, J. Nucl. Mater. 43, 351–353 (1972).CrossRefGoogle Scholar
  67. 67.
    M. W. Burkhart and B. Lustman, Corrosion Mechanisms of Uranium-Base Alloys in High Temperature Water, Trans. AIME 111, 26–31 (1958).Google Scholar
  68. 68.
    S. W. Zehr, A Study of the Intergranular Cracking of U-7.5 wt% Nb-2.5 wt% Zr (mulberry) Alloy in Aqueous Chloride Solutions, Corrosion 28, 196–205 (1972).Google Scholar
  69. 69.
    J. T. Waber, A Review of the Corrosion Behavior of Uranium, Los Alamos Scientific Laboratory Report LA-2035 (Apr. 1956).Google Scholar
  70. 70.
    I. Evans, Short-Term Oxidation of Uranium in Air in the Range 250–325°C, J. Inst. Met. 94, 187–189(1966).Google Scholar
  71. 71.
    O. Kubaschewski and B. E. Hopkins, Oxidation of Metals Academic Press, New York (1962).Google Scholar
  72. 72.
    J. V. Cathcart, R. E. Pawel, and G. F. Petersen, Oxidation Properties of Two Uranium Alloys (U 16.6 at.% Nlv-5.6 at.% Zr and U-21 at.% Nb), Oxid. Met. 3, 497–521 (1971).CrossRefGoogle Scholar
  73. 73.
    J. N. Chirigos, in Physical Metallurgy of Stress Corrosion Fracture (T. N. Rhodin, cd.), pp. 70–78, Interscience, New York (1959).Google Scholar
  74. 74.
    S. T. Picraux and S. M. Myers, Private communication, Sandia Laboratories, Albuquerque, N. M. (1972).Google Scholar
  75. 75.
    G. S. Petit, R, R. Wright, C. A. Krenberger, and C. W. Weber, Formation of Corrosion-Resistant Oxide Films on Uranium, Union Carbide, Oak Ridge Gaseous Diffusion Plant Report K-1778 (Oct. 1969).Google Scholar
  76. 76.
    O. Flint, J. T. Polling, and A. Charlesby, The anodic oxidation of uranium. Acta. Met. 2, 696–712(1954).Google Scholar
  77. 77.
    T. S. Prevender, Private communication, Sandia Laboratories, Albuquerque, N. M. (Nov. 1974).Google Scholar
  78. 78.
    S. Orman and P. Walker, The Corrosion of Uranium and its Prevention by Organic Coatings, J. Oil Colour Chem. Ass. 48, 235–255 (1965).Google Scholar
  79. 79.
    J. M. Maeki and R. L. Kochen, The Corrosion and Stress-Corrosion Cracking of Painted U-4.2 wt% Nb, Dow Chemical, Rocky Flats Division Report RFP-1891 (Aug. 1972).Google Scholar
  80. 80.
    J. W. Dini, H. R. Johnson, and C. W. Schoenfelder, Corrosion Behavior, Mechanical Properties, and Long Term Aging of Nickel Plated Uranium, Sandia Laboratories Report SAND-74–8503 (Dec. 1974).Google Scholar
  81. 81.
    L. J. Weirick, Evaluation of Metallic Coatings for the Corrosion Protection of a Uranium-3/4wt% Ti Alloy, Sandia Laboratories Report SLL-73–5024 (Feb. 1974).Google Scholar
  82. 82.
    L. J. Weirick and D. L. Douglas, The Effect of Thin Electrodeposited Nickel Coatings on the Corrosion Behavior of U-0.75 Ti, Sandia Laboratories Report SLL-74–5010 (June 1974).Google Scholar
  83. 83.
    M. Mattox and R. D. Bland, Aluminum Coating of Uranium Reactor Parts for Corrosion Protection, J. NucL Mater. 21, 349–352 (1967).CrossRefGoogle Scholar
  84. 84.
    R. D. Bland, A Parametric Study of Ion-Plated Aluminum Coatings on Uranium, Electrochem. Tech. 6, 272–278 (1968).Google Scholar
  85. 85.
    B. D. McLaughlin and N. T. Panousis, Protective Metallic Coatings for a y-Quenched U-5 wt% Nb alloy, J. Nucl. Mater. 43, 343–346 (1972).CrossRefGoogle Scholar
  86. 86.
    J. M. Macki, G. Mah, R. L. Kochen, and C. W. Nordin, The Stress-Corrosion Cracking of Aluminum Coated U-4.5 wt% Nb, J. Nucl. Mater. 47, 173–176 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Nicholas J. Magnani
    • 1
  1. 1.Sandia LaboratoriesAlbuquerqueUSA

Personalised recommendations