Energy Distribution of Waves above 1 Hz on Long Wind Waves

  • Karl Richter
  • Wolfgang Rosenthal


Abstract. A new technique is developed to study the spatial distribution of wind-generated ripples on long wind waves in the ocean. For that purpose the deformation of ripple spectra by currents originating from the long waves has to be removed. The data taken during the Jonswap 75 Experiment indicate that the distribution of short surface waves (ripples) on long waves has a maximum in the trough of the long waves, so far as the contribution coherent with the long waves is concerned. If the raw time series are considered, the maximum shifts to the forward front of the long waves due to the effect of orbital motion of the long waves.


Modulation Transfer Function Orbital Motion Orbital Velocity Intrinsic Frequency Coherence Spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers, W., and L. Jones (1978): The modulation of the radar backscattering cross section by long ocean waves. 12th International Conference on Remote Sensing of Environment Manila.Google Scholar
  2. Evans, O. D., and O. H. Shemdin (1980): An investigation of the modulation of capillary and short gravity waves in the open ocean. J. Geophys. Res, 85, 5019–5024.CrossRefGoogle Scholar
  3. Garrett, C., and J. Smith (1976): On the interaction between long and short surface waves. J. Phys. Oceanogr. 6, 925–930.CrossRefGoogle Scholar
  4. Hasselmann, K. (1971): On the mass and momentum transfer between short gravity waves and larger-scale motion. J. Fluid Mech. 50, 189–205.MATHCrossRefGoogle Scholar
  5. Jenkins, G. M., and D. G. Watts (1968): Spectral Analysis and Its Application, Holden-Day, San Francisco.Google Scholar
  6. Keller, W. C., and J. W. Wright (1975): Microwave scattering and the straining of wind generated gravity waves. Radio Sci. 10, 139–147.CrossRefGoogle Scholar
  7. Kitaigorodskii, S. A. (1981): The statistical characteristics of wind generated short gravity waves. Spaceborne Synthetic Aperture Radar for Oceanography (R. C. Beal, P. S. DeLeonibus, and I. Katz, eds.), Johns Hopkins Press, Baltimore.Google Scholar
  8. Kitaigorodskii, S. A., V. P. Krasitskii, and M. M. Zaslavskii (1975): On Phillips’ theory of equilibrium range in the spectra of wind-generated gravity waves. J. Phys. Oceanogr. 5, 410–420.CrossRefGoogle Scholar
  9. Longuet-Higgins, M. S. (1969): A nonlinear mechanism for the generation of sea waves. Proc. Roy. Soc. London Ser. A 311, 371–389.CrossRefGoogle Scholar
  10. Mitsuyasu, H., and I. Honda (1975): The high frequency spectrum of wind generated waves. Rep. Res. Inst. Appl. Mech. Kyushu Univ. 22, No. 71.Google Scholar
  11. Monaldo, F. M., and R. S. Kasevich (1980): Wave-wave interaction study using fine time series optical spectra. Applied Physics Laboratory, Johns Hopkins University, SIR 80U-016.Google Scholar
  12. Phillips, O. M., and M. L. Banner (1974): Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625–640.MATHCrossRefGoogle Scholar
  13. Reece, A. (1978): Modulation of short waves by long waves. Boundary-Layer Meteorol. 13, 203–214.CrossRefGoogle Scholar
  14. Stolte, S. (1979): Ein Modell des kurzwelligen Seegangs im spektralen Frequenzbereich von 0.8 Hz bis 5.0 Hz. Forschungsanstalt der Bundeswehr für Wasserchall- und Geophysik, Bericht.Google Scholar
  15. Wright, J. W., W. J. Plant, W. C. Keller, and W. L. Jones (1980): Ocean wave-radar modulation transfer functions from the West Coast Experiment. J. Geophys. Res. 85, 4957–4966.CrossRefGoogle Scholar
  16. Wu, J. (1979): Distribution and steepness of ripples on carrier waves. J. Phys. Oceanogr. 9, 1014–1021.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Karl Richter
    • 1
  • Wolfgang Rosenthal
    • 2
  1. 1.Deutsches Hydrographisches InstitutHamburgWest Germany
  2. 2.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations