The Response of Synthetic Aperture Radar to Ocean Surface Waves

  • Klaus Hasselmann
  • Werner Alpers


Basic concepts of SAR imaging theory of ocean surface waves are reviewed. The effects of orbital velocity and acceleration on the imaging mechanism are discussed in simple physical terms. The spatially varying orbital velocity contributes to the imaging through “velocity bunching,” while the effect is relatively small and still in the linear range, but produces nonlinear image distortions and smearing for larger orbital velocities. The spatially varying orbital acceleration results in a nonuniform azimuthal image smear. Image contrast enhancement by azimuthal focus adjustment of the SAR processor is attributed to this spatial variability of the orbital acceleration effects.


Synthetic Aperture Radar Synthetic Aperture Radar Image Ocean Wave Orbital Velocity Chirp Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alpers, W. (1983): Monte Carlo simulations for studying the relationship between ocean wave and synthetic aperture radar image spectra, J. Geophys. Res. 88, 1745–1759.CrossRefGoogle Scholar
  2. Alpers, W., and K. Hasselmann (1978): The two-frequency microwave technique for measuring ocean wave spectra from an airplane or satellite. Boundary-Layer Meteorol. 13, 215–230.CrossRefGoogle Scholar
  3. Alpers, W., and K. Hasselmann (1982): Spectral signal and thermal noise properties of ocean wave imaging synthetic aperture radars. Int. J. Remote Sensing 3, 423–446.CrossRefGoogle Scholar
  4. Alpers, W., and C. L. Rufenach (1979): The effect of orbital motions on synthetic aperture radar imagery of ocean waves. IEEE Trans. Antennas Propag. AP-27, 685–690.CrossRefGoogle Scholar
  5. Alpers, W. R., and C. L. Rufenach (1980): Image contrast enhancement by applying focus adjustment in synthetic aperture radar imagery of moving ocean waves. SEASAT-SAR Processor, ESA SP 154, ESA Sci. Tech. Publ. Br., ESTEC, Noordwijk, The Netherlands, 25–30.Google Scholar
  6. Alpers, W., D. B. Ross, and C. L. Rufenach (1981): On the detectability of ocean surface waves by real and synthetic aperture radar. J. Geophys. Res. 86, 6481–6498.CrossRefGoogle Scholar
  7. Bass, F. G., I. M. Fuks, A. I. Kalinykov, I. E. Ostrowsky, and A. D. Rosenberg (1968): Very high frequency radio wave scattering by a disturbed sea surface. IEEE Trans. Antennas Propag. AP-16, 554–568.CrossRefGoogle Scholar
  8. Elachi, C. E., and W. E. Brown (1977): Models of radar imaging of the ocean surface waves. IEEE Trans. Antennas Propag. AP-25, 84–95.CrossRefGoogle Scholar
  9. Graf, K. A., and H. Guthart (1969): Velocity effects in synthetic apertures. IEEE Trans. Antennas Propag. AP-17, 541–546.CrossRefGoogle Scholar
  10. Harger, R. O. (1980): The synthetic aperture radar image of time-variant scenes. Radio Sci. 15, 749–756.CrossRefGoogle Scholar
  11. Hasselmann, K. R. K. Raney, W. J. Plant, W. Alpers, R. A. Shuchman, D. R. Lyzenga, C. L. Rufenach, and M. J. Tucker (1985): Theory of SAR ocean wave imaging: A MARSEN view. J. Geophys. Res. 90 (in press).Google Scholar
  12. Jain, A. (1978): Focusing effects in synthetic aperture radar imagine of ocean waves. Appl Phys. 15, 323–333.CrossRefGoogle Scholar
  13. Keller, W. C., and J. W. Wright (1975): Microwave scattering and straining of wind generated waves. Radio Sci. 10, 139–147.CrossRefGoogle Scholar
  14. Kelly, E. J., and R. P. Wishner (1969): Matched-filter theory for high velocity accelerating targets. IEEE Trans. Mil. Electron. Syst. MES-5, 98–105.Google Scholar
  15. Larson, T. R., L. I. Moskowitz, and J. W. Wright (1976): A note on SAR imagery of the ocean. IEEE Trans. Antennas Propag. AP-24, 393–394.CrossRefGoogle Scholar
  16. Raney, R. K. (1971): Synthetic aperture imaging radar and moving targets. IEEE Trans. Aerosp. Electron. Syst. AES-7, 499–505.CrossRefGoogle Scholar
  17. Raney, R. K. (1980): SAR response to partially coherent phenomena. IEEE Trans. Antennas Propag. AP-28, 777–787.CrossRefGoogle Scholar
  18. Raney, R. K. (1981): Wave orbital velocity, fade and SAR response to azimuth waves. IEEE J. Ocean. Eng. OE-6, 140–146.CrossRefGoogle Scholar
  19. Rufenach, C. L., and W. Alpers (1981): Imaging ocean waves by synthetic aperture radars with long integration times. IEEE Trans. Antennas Propag. AP-27, 725–729.Google Scholar
  20. Shemdin, O. H., W. E. Brown, Jr. F. G. Staudhamer, R. Shuchman, R. Rawson, J. Zelenka, D. B. Ross, W. McLeish, and R. A. Berles (1978): Comparison of in-situ and remotely sensed ocean waves off Marineland, Florida. Boundary-Layer Meteorol. 13, 225–234.CrossRefGoogle Scholar
  21. Shuchman, R. A., E. S. Kasischke, and A. Klooster (1978): Synthetic aperature radar ocean wave studies. Final Report No. 131700–3-F.Google Scholar
  22. Environmental Research Institute of Michigan, Ann Arbor. Swift, C. T., and L. R. Wilson (1979): Synthetic aperture radar imaging of ocean waves. IEEE Trans. Antennas Propag. AP-27, 725–729.Google Scholar
  23. Teleki, P. G., R. A. Shuchman, W. E. Brown, W. McLeish, D. B. Ross, and M. Mattie (1978): Ocean wave detection and direction measurements with microwave radar. Oceans ‘78, Sept. 6–8, 639–648.Google Scholar
  24. Tucker, M. J. (1981): The ability of satellite-borne synthetic aperature radar to measure sea waves: The effects of sea surface motions. Working paper, January.Google Scholar
  25. Valenzuela, G. R. (1980): An asymptotic formulation for SAR images of the dynamical ocean surface. Radio Sd. 15, 105–114.Google Scholar
  26. Wright, J. W. (1968): A new model for sea clutter. IEEE Trans. Antennas Propag. AP-16, 217–223.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • Klaus Hasselmann
    • 1
  • Werner Alpers
    • 2
  1. 1.Max-Planck-Institut für MeteorologieHamburgWest Germany
  2. 2.Institut für MeereskundeUniversität Hamburg, Max-Planck-Institut für MeteorologieHamburgWest Germany

Personalised recommendations