# The Equilibrium Ranges in Wind—Wave Spectra

## Abstract

A review is given of the present ideas on the structure of the equilibrium range in the spectrum of wind-generated gravity waves in deep and shoaling water. It is also shown that an exact analog of Kolmogoroff’s spectrum in a random field of weakly nonlinear surface gravity waves gives a spectral form for frequency spectra S(ω)~ω^{-4} in close agreement with the results of recent observational studies. A suggestion is made for the description of a “transitional” range of wavenumbers (frequencies), where the deviation from Kolmogoroff’s equilibrium is due to gravitational instability (wavebreaking). Because of this it is suggested that one of the possible equilibrium forms for the spectrum of wind generated waves has two asymptotic regimes: Kolmogoroff’s and Phillips’ type of equilibrium with a relatively rapid transition from the first to the second at high frequencies.

## Keywords

Gravity Wave Wind Wave Inertial Subrange Weak Turbulence Rear Face## Preview

Unable to display preview. Download preview PDF.

## References

- Benilov, A. Y., M. M. Zaslavskii, and S. A. Kitaigorodskii (1978a): Construction of small parametric models of wind-wave generation.
*Oceanology***18**, 387–390.Google Scholar - Benilov, A. Y., A. I. Gumbatov, M. M. Zaslavskii, and S. A. Kitaigorodskii (1978b): A nonstationary model of development of the turbulent boundary layer over the sea with generation of surface waves.
*Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana***14**, 830–836.Google Scholar - Bouws, E., Günther, H., Rosenthal, W., and Vincent, C. L. (1986a): Similarity of the wind-wave spectrum in finite depth water. I. Spectral form, J. Geophys. Res. (in press).Google Scholar
- Bouws, E., Günther, H., Rosenthal, W., Vincent, C. L. (1986b): Similarity of the wind-wave spectrum in finite depth water. II. Statistical relations between shape and growth parameters, J. Geophys. Res. (in Press).Google Scholar
- Burling, R. W. (1959): The spectrum of waves at short fetches. Dtsch. Hydrogr. Z. 12, 45–
**64**, 96–117.Google Scholar - Donelan, M. A., J. Hamilton, and W. H. Hui (1982): Directional spectra of wind-generated waves. Unpublished manuscript.Google Scholar
- Forristall, Z., (1981): Measurements of a saturated range in ocean wave spectra.
*J. Geophys. Res.*86, 8075–8084.CrossRefGoogle Scholar - Gadzhiyev, J. Z., and V. P. Krasitskii (1978): On equilibrium range in the frequency spectra of wind waves in the finite depth sea.
*Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana***14**, 335–339.Google Scholar - Gadzhiyev, J. Z., S. A. Kitaigorodskii, and V. P. Krasitskii (1978): On a high-frequency region in the spectra of wind-driven waves in the presence of currents in a shallow sea.
*Oceanology***18**, 411–416.Google Scholar - Garrat, T. R. (1977): Review of drag coefficients over oceans and continents.
*Mon. Weather Rev.*105, 915–922.CrossRefGoogle Scholar - Hasselmann, K. (1962): On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory.
*J. Fluid Mech.***12**, 481–500.MathSciNetMATHCrossRefGoogle Scholar - Hasselmann, K. (1963): On the nonhnear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems, wave-particle correspondence, irreversibility.
*J. Fluid Mech*.**15**, 273–381.MathSciNetMATHCrossRefGoogle Scholar - Hasselmann, K. (1968): Weak interaction theory of ocean waves. Basic Developments in Fluid Dynamics (M. Holt, ed.). Academic Press, New York, 2, 117.Google Scholar
- Hasselmann, K., T. P. Bamett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D. J. Olbers, K. Richter, W. Sell, and H. Walden (1973): Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (jonswap). Dtsch. Hydrogr. Z. SuppL A 8(12).Google Scholar
- Kahma, K. K. (1981a): A study of the growth of the wave spectrum with fetch.
*J. Phys. Oceanogr.***11**, 1503–1515.CrossRefGoogle Scholar - Kahma, K. K. (1981b): On the wind speed dependence of the saturation range of the wave spectrum. Paper presented at Geofgslikan paivat, Helsinki.Google Scholar
- Kitaigorodskii, S. A. (1962): Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process.
*Izv. Akad. Nauk SSSR Ser. Geofiz*.**1**, 105–117.Google Scholar - Kitaigorodskii, S. A. (1981): The statistical characteristics of wind-generated short gravity waves. Spaceborne Synthetic Aperture Radar for Oceanography (R. C. Beal, P. S. DeLeonibus and I. Katz, eds.), Johns Hopkins Press, Baltimore.Google Scholar
- Kitaigorodskii, S. A. (1983). On the theory of equilibrium range in the spectrum of wind-generated gravity waves.
*J. Phys. Oceanogr*. 13(N5), 816–827.CrossRefGoogle Scholar - Kitaigorodskii, S. A. and Hansen, C. (1986): The general explanation of the quasi-universal form of the rear face of the spectra of wind-generated waves at different stages of their development, J. Phys. Oceanogr. (submitted).Google Scholar
- Kitaigorodskii, S. A., V. P. Krasitskii, and M. M. Zaslavskii (1975): On Phillips’ theory of equilibrium range in the spectra of wind-generated gravity waves.
*J. Phys. Oceanogr.***5**, 410–420.CrossRefGoogle Scholar - Kolmogoroff, A. N. (1941): The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers.
*C.R. Acad. Sci. USSR***30**, 301.MathSciNetGoogle Scholar - Kolmogoroff, A. N. (1962): A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers.
*J. Fluid Mech*.**13**, 82–85.MathSciNetCrossRefGoogle Scholar - Mitsuyasu, H. (1977): Measurement of the high frequency spectrum of ocean surface waves.
*J. Phys. Oceanogr.***7**, 882–891.CrossRefGoogle Scholar - Phillips, O. M. (1958): The equilibrium range in the spectrum of wind-generated waves.
*J. Fluid Mech*. 4, 426–434.MathSciNetMATHCrossRefGoogle Scholar - Phillips, O. M. (1977): The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, London.MATHGoogle Scholar
- Phillips, O. M. (1985): Spectral and statistical properties of the equilibrium range in wind generated gravity waves,
*J. Fluid Mech*. 156: 505–531.MATHCrossRefGoogle Scholar - Vincent, C. L. (1982): Shallow water wave modelling. Proceedings, 1st Conference on Air-Sea Interaction in Coastal Zone.Google Scholar
- West, B. T. (1981): On the simpler aspects of nonhnear fluctuating deep water gravity waves. (Weak interaction theory.) Center for Studies of Nonlinear Dynamics, La Jolla Institute.Google Scholar
- Zakharov, V. E. (1974): Hamiltonian formulation for nonlinear dispersive waves.
*Izv. Yvzov Radiofz*.**17**, N4.Google Scholar - Zakharov, V. E. and Zaslavskiy, M. M. (1982): The kinetic equation and Kolmogorov spectra in the weak turbulence theory of wind-waves,
*Izv. Atmos. Ocean. Phys.*18:747–752 (English translation).Google Scholar - Zakharov, V. E. and Zaslavskiy, M. M. (1983): Shape of the spectrum of energy carrying components of a water surface in the weak-turbulence theory of wind-wave,
*Izv. Atmos. Ocean. Phys.*19:207–212 (English translation).Google Scholar - Zakharov, V. E., and N. N. Filonenko (1966): The energy spectrum for random surface waves. Dokl. Akad. Sci. SSSR
**170**, 1291–1295.Google Scholar - Zaslavskii, M. M., and S. A. Kitaigorodskii (1971): On equilibrium range in the spectrum of wind-generated surface gravity waves.
*Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana***7**, 565–570.Google Scholar - Zaslavskii, M. M., and S. A. Kitaigorodskii (1972): Intermittent pattern effects in the equilibrium range of growing wind-generated waves.
*Izv. Akad. Nauk SSSR Fix. Atmos. Okeana***5**, 1230–1234.Google Scholar