Advertisement

The Equilibrium Ranges in Wind—Wave Spectra

Physical Arguments and Experimental Evidence for and against Their Existence
  • S. A. Kitaigorodskii

Abstract

A review is given of the present ideas on the structure of the equilibrium range in the spectrum of wind-generated gravity waves in deep and shoaling water. It is also shown that an exact analog of Kolmogoroff’s spectrum in a random field of weakly nonlinear surface gravity waves gives a spectral form for frequency spectra S(ω)~ω-4 in close agreement with the results of recent observational studies. A suggestion is made for the description of a “transitional” range of wavenumbers (frequencies), where the deviation from Kolmogoroff’s equilibrium is due to gravitational instability (wavebreaking). Because of this it is suggested that one of the possible equilibrium forms for the spectrum of wind generated waves has two asymptotic regimes: Kolmogoroff’s and Phillips’ type of equilibrium with a relatively rapid transition from the first to the second at high frequencies.

Keywords

Gravity Wave Wind Wave Inertial Subrange Weak Turbulence Rear Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benilov, A. Y., M. M. Zaslavskii, and S. A. Kitaigorodskii (1978a): Construction of small parametric models of wind-wave generation. Oceanology 18, 387–390.Google Scholar
  2. Benilov, A. Y., A. I. Gumbatov, M. M. Zaslavskii, and S. A. Kitaigorodskii (1978b): A nonstationary model of development of the turbulent boundary layer over the sea with generation of surface waves. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 14, 830–836.Google Scholar
  3. Bouws, E., Günther, H., Rosenthal, W., and Vincent, C. L. (1986a): Similarity of the wind-wave spectrum in finite depth water. I. Spectral form, J. Geophys. Res. (in press).Google Scholar
  4. Bouws, E., Günther, H., Rosenthal, W., Vincent, C. L. (1986b): Similarity of the wind-wave spectrum in finite depth water. II. Statistical relations between shape and growth parameters, J. Geophys. Res. (in Press).Google Scholar
  5. Burling, R. W. (1959): The spectrum of waves at short fetches. Dtsch. Hydrogr. Z. 12, 45–64, 96–117.Google Scholar
  6. Donelan, M. A., J. Hamilton, and W. H. Hui (1982): Directional spectra of wind-generated waves. Unpublished manuscript.Google Scholar
  7. Forristall, Z., (1981): Measurements of a saturated range in ocean wave spectra. J. Geophys. Res. 86, 8075–8084.CrossRefGoogle Scholar
  8. Gadzhiyev, J. Z., and V. P. Krasitskii (1978): On equilibrium range in the frequency spectra of wind waves in the finite depth sea. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 14, 335–339.Google Scholar
  9. Gadzhiyev, J. Z., S. A. Kitaigorodskii, and V. P. Krasitskii (1978): On a high-frequency region in the spectra of wind-driven waves in the presence of currents in a shallow sea. Oceanology 18, 411–416.Google Scholar
  10. Garrat, T. R. (1977): Review of drag coefficients over oceans and continents. Mon. Weather Rev. 105, 915–922.CrossRefGoogle Scholar
  11. Hasselmann, K. (1962): On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481–500.MathSciNetMATHCrossRefGoogle Scholar
  12. Hasselmann, K. (1963): On the nonhnear energy transfer in a gravity-wave spectrum. Part 2. Conservation theorems, wave-particle correspondence, irreversibility. J. Fluid Mech. 15, 273–381.MathSciNetMATHCrossRefGoogle Scholar
  13. Hasselmann, K. (1968): Weak interaction theory of ocean waves. Basic Developments in Fluid Dynamics (M. Holt, ed.). Academic Press, New York, 2, 117.Google Scholar
  14. Hasselmann, K., T. P. Bamett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Müller, D. J. Olbers, K. Richter, W. Sell, and H. Walden (1973): Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (jonswap). Dtsch. Hydrogr. Z. SuppL A 8(12).Google Scholar
  15. Kahma, K. K. (1981a): A study of the growth of the wave spectrum with fetch. J. Phys. Oceanogr. 11, 1503–1515.CrossRefGoogle Scholar
  16. Kahma, K. K. (1981b): On the wind speed dependence of the saturation range of the wave spectrum. Paper presented at Geofgslikan paivat, Helsinki.Google Scholar
  17. Kitaigorodskii, S. A. (1962): Applications of the theory of similarity to the analysis of wind-generated wave motion as a stochastic process. Izv. Akad. Nauk SSSR Ser. Geofiz. 1, 105–117.Google Scholar
  18. Kitaigorodskii, S. A. (1981): The statistical characteristics of wind-generated short gravity waves. Spaceborne Synthetic Aperture Radar for Oceanography (R. C. Beal, P. S. DeLeonibus and I. Katz, eds.), Johns Hopkins Press, Baltimore.Google Scholar
  19. Kitaigorodskii, S. A. (1983). On the theory of equilibrium range in the spectrum of wind-generated gravity waves. J. Phys. Oceanogr. 13(N5), 816–827.CrossRefGoogle Scholar
  20. Kitaigorodskii, S. A. and Hansen, C. (1986): The general explanation of the quasi-universal form of the rear face of the spectra of wind-generated waves at different stages of their development, J. Phys. Oceanogr. (submitted).Google Scholar
  21. Kitaigorodskii, S. A., V. P. Krasitskii, and M. M. Zaslavskii (1975): On Phillips’ theory of equilibrium range in the spectra of wind-generated gravity waves. J. Phys. Oceanogr. 5, 410–420.CrossRefGoogle Scholar
  22. Kolmogoroff, A. N. (1941): The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers. C.R. Acad. Sci. USSR 30, 301.MathSciNetGoogle Scholar
  23. Kolmogoroff, A. N. (1962): A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13, 82–85.MathSciNetCrossRefGoogle Scholar
  24. Mitsuyasu, H. (1977): Measurement of the high frequency spectrum of ocean surface waves. J. Phys. Oceanogr. 7, 882–891.CrossRefGoogle Scholar
  25. Phillips, O. M. (1958): The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech. 4, 426–434.MathSciNetMATHCrossRefGoogle Scholar
  26. Phillips, O. M. (1977): The Dynamics of the Upper Ocean, 2nd ed., Cambridge University Press, London.MATHGoogle Scholar
  27. Phillips, O. M. (1985): Spectral and statistical properties of the equilibrium range in wind generated gravity waves, J. Fluid Mech. 156: 505–531.MATHCrossRefGoogle Scholar
  28. Vincent, C. L. (1982): Shallow water wave modelling. Proceedings, 1st Conference on Air-Sea Interaction in Coastal Zone.Google Scholar
  29. West, B. T. (1981): On the simpler aspects of nonhnear fluctuating deep water gravity waves. (Weak interaction theory.) Center for Studies of Nonlinear Dynamics, La Jolla Institute.Google Scholar
  30. Zakharov, V. E. (1974): Hamiltonian formulation for nonlinear dispersive waves. Izv. Yvzov Radiofz. 17, N4.Google Scholar
  31. Zakharov, V. E. and Zaslavskiy, M. M. (1982): The kinetic equation and Kolmogorov spectra in the weak turbulence theory of wind-waves, Izv. Atmos. Ocean. Phys. 18:747–752 (English translation).Google Scholar
  32. Zakharov, V. E. and Zaslavskiy, M. M. (1983): Shape of the spectrum of energy carrying components of a water surface in the weak-turbulence theory of wind-wave, Izv. Atmos. Ocean. Phys. 19:207–212 (English translation).Google Scholar
  33. Zakharov, V. E., and N. N. Filonenko (1966): The energy spectrum for random surface waves. Dokl. Akad. Sci. SSSR 170, 1291–1295.Google Scholar
  34. Zaslavskii, M. M., and S. A. Kitaigorodskii (1971): On equilibrium range in the spectrum of wind-generated surface gravity waves. Izv. Akad. Nauk SSSR Fiz. Atmos. Okeana 7, 565–570.Google Scholar
  35. Zaslavskii, M. M., and S. A. Kitaigorodskii (1972): Intermittent pattern effects in the equilibrium range of growing wind-generated waves. Izv. Akad. Nauk SSSR Fix. Atmos. Okeana 5, 1230–1234.Google Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • S. A. Kitaigorodskii
    • 1
  1. 1.Department of Earth and Planetary SciencesThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations