Advances in Breaking-Wave Dynamics

  • M. S. Longuet-Higgins


Progress has been made recently not only in numerical methods of calculating steep waves but also in finding analytic solutions for overturning fluid motions. Thus, the tip of the wave can take the form of a slender hyperbola, in which the orientation of the axes and the angle between the asymptotes are both functions of the time. The initial stages of overturning are given approximately by a two-term expression for the potential, with a branch-point located in the “tube” of the wave. Most remarkably, plunging breakers appear experimentally to tend toward certain exact, time-dependent flows (recently discovered) in which the forward face is given by a simple parametric cubic curve. Dynamical aspects breaking waves are discussed, particularly in terms of angular momentum.


Angular Momentum Free Surface Gravity Wave Breaking Wave Surf Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker, G. R., and M. Israeli (1981): Numerical techniques for free surface motion with application to drip motion caused by variable surface tension. Lecture Notes in Physics 141, Springer-Verlag, Berlin, 61–67.MathSciNetCrossRefGoogle Scholar
  2. Banner, M. L., and O. M. Phillips (1974): On small scale breaking waves. J. Fluid Mech. 65, 647–657.zbMATHCrossRefGoogle Scholar
  3. Benjamin, T. B. (1967): Instability of periodic wavetrains in nonlinear dispersive systems. Proc. R. Soc. London Ser. A 299, 59–67.CrossRefGoogle Scholar
  4. Chen, B., and P. G. Saffman (1980): Numerical evidence for the existence of new types of gravity waves of permanent form on deep water. Stud. Appl. Math. 62, 1–21.MathSciNetzbMATHGoogle Scholar
  5. Cleaver, R. P. (1981): Instabilities of surface gravity waves. Ph.D. dissertation. University of Cambridge.Google Scholar
  6. Cokelet, E. D. (1977): Steep gravity waves in water of arbitrary uniform depth. Philos. Trans. R. Soc. London Ser. A 286, 183–230.MathSciNetzbMATHCrossRefGoogle Scholar
  7. John, F. (1953): Two-dimensional potential flows with a free boundary. Comm. Pure Appl. Math. 6, 497–503.MathSciNetzbMATHCrossRefGoogle Scholar
  8. Lamb, H. (1932): Hydrodynamics, 6th ed. Cambridge University Press, London.zbMATHGoogle Scholar
  9. Longuet-Higgins, M. S. (1972): A class of exact, time-dependent free-surface flows. J. Fluid Mech. 55, 529–543.MathSciNetzbMATHCrossRefGoogle Scholar
  10. Longuet-Higgins, M. S. (1976): Self-similar, time-dependent flows with a free surface. J. Fluid Mech. 73, 603–620.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Longuet-Higgins, M. S. (1978a): The instabilities of gravity waves of finite amplitude in deep water. Proc. R. Soc. London Ser. A 360, 471–505.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Longuet-Higgins, M. S. (1978b): On the dynamics of steep gravity waves in water. Turbulent Fluxes Through the Sea Surface, Wave Dynamics, and Prediction (A. Favre and K. Hasselmann, eds.). Plenum Press, New York, 199–219.CrossRefGoogle Scholar
  13. Longuet-Higgins, M. S. (1980a): A technique for time-dependent, free surface flows. Proc. R. Soc. London Ser. A 371, 441–451.MathSciNetzbMATHCrossRefGoogle Scholar
  14. Longuet-Higgins, M. S. (1980b): On the forming of sharp comers at a free surface. Proc. R. Soc. London Ser. A 371, 453–478.MathSciNetzbMATHCrossRefGoogle Scholar
  15. Longuet-Higgins, M. S. (1980c): Spin and angular momentum in gravity waves. J. Fluid Mech. 97, 1–25.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Longuet-Higgins, M. S. (1981): On the overturning of gravity waves. Proc. R. Soc. London Ser. A 376, 377–400.MathSciNetzbMATHCrossRefGoogle Scholar
  17. Longuet-Higgins, M. S. (1982): Parametric solutions for breaking waves. J. Fluid Mech. 121, 403–424.MathSciNetzbMATHCrossRefGoogle Scholar
  18. Longuet-Higgins, M. S., and E. D. Cokelet (1976): The deformation of steep surface waves on water. I. A numerical method of computation. Proc. R. Soc. London Ser. A 350, 175–189.MathSciNetzbMATHCrossRefGoogle Scholar
  19. Longuet-Higgins, M. S., and E. D. Cokelet (1978): The deformation of steep surface waves on water. IL Growth of normal-mode instabilities. Proc. R. Soc. London Ser. A 364, 1–28.MathSciNetzbMATHCrossRefGoogle Scholar
  20. Miles, J. W. (1980): Sohtary waves. Ann. Rev. Fluid Mech. 12, 11–43.CrossRefGoogle Scholar
  21. Miller, R. L. (1957): Role of vortices in surfzone prediction, sedimentation and wave forces. Beach and Nearshore Sedimentation (R. A. Davis and R. L. Ethington, eds.), Soc. Econ. Palaeontol. Mineral., Tulsa, Okla., 92–114.Google Scholar
  22. New, A. L. (1981): Breaking waves in water of finite depth. British Theor. Mech. Colloquium, Bradford, England, pp. 6–9.Google Scholar
  23. Olfe, D. B., and J. W. Rottman (1979): Numerical calculations of steady gravity-capillary waves using an integro-differential formulation. J. Fluid Mech. 94, 777–793.MathSciNetzbMATHCrossRefGoogle Scholar
  24. Vanden-Broeck, J.-M., and L. W. Schwartz (1979): Numerical computation of steep waves in shallow water. Phys. Fluids 22, 1868–1971.zbMATHCrossRefGoogle Scholar
  25. Vinje, T. and Brevig, P. (1981): Breaking waves on finite water depths: a numerical study. Ship. Res. Inst. Norway, Report R-111.81.Google Scholar
  26. Williams, J. M. (1981): Limiting gravity waves in water of finite depth. Philos. Trans. R. Soc. London Ser. A 302, 139–188.zbMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1986

Authors and Affiliations

  • M. S. Longuet-Higgins
    • 1
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeEngland
  2. 2.Institute of Oceanographic SciencesWormleyEngland

Personalised recommendations