Advertisement

Urolithiasis pp 855-863 | Cite as

The Pathways of Oxalate Biosynthesis

  • Keith E. Richardson
  • Michael P. Farinelli

Abstract

Urinary oxalate in man originates from the absorption of dietary oxalate (3–11%) and endogenous synthesis from several precursors1. Ascorbic acid has been reported to provide from 10 to 40% of the total urinary oxalate while glycine provides another 40 Glycolate, glyoxylate, tryptophan, tyrosine, phenylalanine, and serine and possibly citrate, xylitol, hydroxyproline, ethanolamine, and glucose also contribute to oxalate biosynthesis. The pathways of oxalate biosynthesis are summarized in Figure 1.

Keywords

Glycolic Acid Urinary Oxalate Oxalate Excretion Primary Hyperoxaluria Primary Hyperoxaluria Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. E. Williams, and L. H. Smith Jr., in: “The Metabolic Basis of Inherited Disease,” J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds., McGraw Hill, New York (1978).Google Scholar
  2. 2.
    J. C. Crawhall, E. F. Scowen, and R. W. E. Watts, Lancet 2:806 (1959).PubMedCrossRefGoogle Scholar
  3. 3.
    E. M. Baker, J. C. Saari, and B. M. Tolbert, Am. J. Clin. Nutr. 19:371 (1966).PubMedGoogle Scholar
  4. 4.
    R. L. Gambardella, and K. E. Richardson, Biochim. Biophys. Acta. 499:156 (1977).PubMedCrossRefGoogle Scholar
  5. 5.
    D. W. Fry, and K. E. Richardson, Biochim. Biophys. Acta. 567:482 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    T. J. Runyan, and S. N. Gershoff, J. Biol. Chem. 240:1889 (1965).PubMedGoogle Scholar
  7. 7.
    L. L. Liao, and K. E. Richardson, Arch. Biochem. Biophys. 153:438 (1972).PubMedCrossRefGoogle Scholar
  8. 8.
    L. L. Liao, and K. E. Richardson, Biochim. Biophys. Acta. 538:76 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    K. S. Harris, and K. E. Richardson, Invest. Urol. (1980) (in press).Google Scholar
  10. 10.
    K. E. Richardson, and N. E. Tolbert, J. Biol. Chem. 236:1280 (1961).PubMedGoogle Scholar
  11. 11.
    D. A. Gibbs, and R. W. E. Watts, Clin. Sci. 31:285 (1966).PubMedGoogle Scholar
  12. 12.
    D. W. Fry, and K. E. Richardson, Biochim. Biophys. Acta. 568:135 (1979).PubMedCrossRefGoogle Scholar
  13. 13.
    D. A. Gibbs, and R. W. E. Watts, Clin. Sci. 44:227 (1973).PubMedGoogle Scholar
  14. 14.
    K. E. Richardson, Endocrinology 74:128 (1964).PubMedCrossRefGoogle Scholar
  15. 15.
    K. E. Richardson, Toxicol. Appl. Pharmacol. 24:530 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    L. L. Liao, and K. E. Richardson, Arch. Biochem. Biophys. 154:68 (1973).PubMedCrossRefGoogle Scholar
  17. 17.
    A. M. Rofe, and J. B. Edwards, Biochem. Med. 20:323 (1978).PubMedCrossRefGoogle Scholar
  18. 18.
    R. L. Gambardella, and K. E. Richardson, Biochim. Biophys. Acta. 544:315 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    H. E. Williams, and L. H. Smith Jr., Science 171:390 (1971).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Keith E. Richardson
    • 1
  • Michael P. Farinelli
    • 1
  1. 1.Department of Physiological ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations