Advertisement

Urolithiasis pp 741-745 | Cite as

Role of Nicotinamide Adenine Dinucleotide (NAD) in Control of Proximal Renal Tubular Phosphate Transport

  • Thomas P. Dousa
  • Stephen A. Kempson

Abstract

The molecular mechanism whereby the rate of phosphate (Pi) is transported across the wall of the proximal tubule in response to hormones and metabolic or nutritional stimuli is not yet fully clarified. In recent years it became increasingly evident that the Na+ gradient-dependent entry of Pi from the tubular lumen across luminal brush border membranes (BBM) of proximal tubules is important and perhaps a quantitatively limiting step in Pi reabsorption in proximal tubules1.

Keywords

Proximal Tubule Nicotinamide Adenine Dinucleotide Brush Border Membrane Nicotinamide Adenine Dinucleotide Unilateral Ureteral Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. P. Dousa, S. A. Kempson, and S. V. Shah, Adv. Exp. Med. Biol. 128:69 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    S. A. Kempson, D. M. Heublein, and T. P. Dousa, Clin. Res. 28:452A (1980).Google Scholar
  3. 3.
    A. White, P. Handler, E. L. Smith, R. L. Hill, and I. R. Lehman, in: “Principles of Biochemistry,” McGraw-Hill Book Company, New York (1978).Google Scholar
  4. 4.
    S. A. Kempson, S.-Y. L. Qu, and T. P. Dousa, Kid. Int. 18:in press (1980).Google Scholar
  5. 5.
    S. A. Kempson, S.-Y. L. Qu, and T. P. Dousa, Clin. Res. 28:in press (1980).Google Scholar
  6. 6.
    R. Kirsten and E. Kirsten, Am. J. Physiol. 223:229 (1972).PubMedGoogle Scholar
  7. 7.
    S.-Y. L. Qu, S. A. Kempson, and T. P. Dousa, Clin. Res. 28:in press (1980).Google Scholar
  8. 8.
    H. Rasmussen, D. B. P. Goodman, N. Friedmann, N. E. Allen, and K. Kurokawa, in: “Handbook of Physiology,” G. D. Aurbach, ed., American Physiology Society, Washington, D. C. (1976).Google Scholar
  9. 9.
    C. Evers, H. Murer, and R. Kinne, Biochem. J. 172:49 (1978).PubMedGoogle Scholar
  10. 10.
    T. J. Berndt, F. G. Knox, and T. P. Dousa, Kid. Int. 18:in press (1980).Google Scholar
  11. 11.
    S. A. Kempson, S. V. Shah, P. G. Werness, T. Berndt, P. H. Lee, L. H. Smith, F. G. Knox, and T. P. Dousa, Kid. Int. 18:36 (1980).CrossRefGoogle Scholar
  12. 12.
    C. I. Pogson, I. D. Longshaw, A. Roobol, S. A. Smith, and G. A. O. Alleyne, in: “Gluconeogenesis: Its Regulation in Mammalian Species,” R. W. Hanson and M. A. Mehlman, eds., John Wiley and Sons, New York (1976).Google Scholar
  13. 13.
    S. T. Turner, G. Colon-Otero, S. A. Kempson, and T. P. Dousa, Clin. Res. 29:in press (1981).Google Scholar
  14. 14.
    W. J. Kreusser, C. Descoeudres, Y. Oda, S. G. Massry, and K. Kurokawa, Mineral Electrolyte Metab. 3:312 (1980).Google Scholar
  15. 15.
    H. Nito, C. Descoeudres, K. Kurokawa, and S. G. Massry, J. Lab. Clin. Med. 91:60 (1978).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Thomas P. Dousa
    • 1
  • Stephen A. Kempson
    • 1
  1. 1.Mayo Clinic and FoundationRochesterUSA

Personalised recommendations