Advertisement

Abstract

To most graph theorists there are two outstanding landmarks in the history of their subject. One is Euler’s solution of the Königsberg Bridges Problem, dated 1736, and the other is the appearance of Dénes König’s textbook in 1936. “From Königsberg to König’s book” sings the poetess, “So runs the graphic tale ...; ” [10].

Keywords

Span Tree Regular Graph Finite Graph Elementary Chain Infinite Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. van Aardenne-Ehrenfest and N. G. de Bruijn, Circuits and trees in oriented linear graphs,Simon Stevin 28(1951), 203–217.MathSciNetMATHGoogle Scholar
  2. [2]
    W. W. Rouse Ball and H. S. M. Coxeter, Mathematical Recreations and Essays,12th Edition, University of Toronto Press, 1974.Google Scholar
  3. [3]
    E. A. Bender, The number of Three-dimensional Convex Polyhedra,Amer. Math. Monthly, 94(1987), 7–21.MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    N. L. Biggs, T. P, Kirkman, Mathematician,Bull. London Math. Soc., 13(1981), 97–120.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    N. L. Biggs, E. K. Lloyd and R. J. Wilson, Graph Theory, 1736- 1936,Oxford 1976.MATHGoogle Scholar
  6. [6]
    R. L. Brooks, C. A. B. Smith, A. H. Stone and W. T. Tutte, The Dissection of Rectangles into Squares,Duke Math. J., 7, (1940), 312–340.MathSciNetCrossRefGoogle Scholar
  7. [7]
    W. G. Brown, ed. Reviews in Graph Theory,Amer. Math. Soc., 1980.Google Scholar
  8. [8]
    N. G. de Bruijn, Polya’s Theory of Counting,Chapter 5 of Applied Combinatorial Mathematics,E. F. Beckenbach ed.. New York 1964.Google Scholar
  9. [9]
    A. Cayley, On the theory of the analytical forms called trees. Mathematical Papers, Vol. 3, 242–246 and Vol. 4, 112–115.Google Scholar
  10. [10]
    B. Descartes, The expanding Unicurse,on page 25 of Proof Techniques in Graph Theory,F. Harary, ed., New York 1969.Google Scholar
  11. [11]
    G. A. Dirac, Some Theorems on Abstract Graphs,Proc. London Math. Soc., (3), 2 (1952), 69–81.MathSciNetCrossRefGoogle Scholar
  12. [12]
    P. Erdös, T. Grünwald and E. Vazsonyi, Uber Euler-Linten un- endlicher Graphen,J. Math, and Phys., 17 (1938), 59–75.Google Scholar
  13. [13]
    L. R. Ford and D. R. Fulkerson, Flows in Networks,Princeton 1962.MATHGoogle Scholar
  14. [14]
    E. Ya. Grinberg, Plane Homogeneous Graphs of Degree Three without Hamiltonian Circuits,(Russian), Latvian Math. Yearbook, 4 (1968), 51–58.MathSciNetMATHGoogle Scholar
  15. [15]
    B. Grünbaum, Convex Polytopes,New York 1967.MATHGoogle Scholar
  16. [16]
    P. M. Grundy and C. A. B. Smith, Disjunctive Games with the Last Player Losing,Proc. Cambridge Phil. Soc., 52 (1956), 527–533.MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    R. K. Guy and C. A. B. Smith, The G-Values of Various Games,Proc. Cambridge Phil. Soc., 52 (1956), 514–526.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    P. Hall, On Representations of Subsets,J. London Math. Soc., 10 (1935), 26–30.CrossRefGoogle Scholar
  19. [19]
    F. Harary, R. Z. Norman and D. Cartwright, Structural Models,New York 1965.MATHGoogle Scholar
  20. P. Kasteleyn, The Statistics of Dimers on a Lattice,Physica 27 (1961), 1209–1225.CrossRefGoogle Scholar
  21. [21]
    P. J. Kelly, A Congruence Theorem for Trees,Proc. Cambridge Phil. Soc., 65 (1969), 387–397.CrossRefGoogle Scholar
  22. [22]
    J. W. Moon, Topics on Tournaments,New York 1968.MATHGoogle Scholar
  23. [23]
    C. St. J. A. Nash-Williams, Marriage in Denumerable Societies,J. Comb. Theory A, 19(1975), 335–366.MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    C. St. J. A. Nash-Williams and W. T. Tutte, More Proofs of Menger’s Theorem,J. Graph Theory, 1(1977), 13–17.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    O. Ore, Studies on Directed Graphs, I,Ann. of Math. 2, 63 (1956), 383–406.MathSciNetCrossRefGoogle Scholar
  26. G. Polya, Kombinatorische Anzahlbestimmungenfur Gruppen, Graphen und chemische Verbindungen,Acta Math. 68(1937), 145–254.CrossRefGoogle Scholar
  27. [27]
    L. Posa, On the Circuits of Finite Graphs,Publ. Math. Inst. Hung. Acad. Sci 8 (1963) A3, 355–361.MathSciNetGoogle Scholar
  28. [28]
    J. H. Redfield, The Theory of Group-reduced Distributions,Amer. J. Math., 49(1927), 433–455.MathSciNetMATHCrossRefGoogle Scholar
  29. [29]
    L. B. Richmond and N. C. Wormald, The Asymptotic Number of Convex Polyhedra,Trans. Amer. Math. Soc., 273(1982), 721–735.MathSciNetMATHCrossRefGoogle Scholar
  30. [30]a
    H. Seifert and W. Threlfall, Lehrbuch der Topologie,Leipzig 1934.Google Scholar
  31. b.
    H. Seifert and W. ThrdfaJl, English translation by Michael Goldman, edited by Joan Birman and Julian Eisner,A Textbook of Topology,(Pure and Applied Mathematics), 1980.Google Scholar
  32. [31]
    P. Seymour, Nowhere-zero 6-flows,J. Comb. Theory B, 30(1981), 130–135.MathSciNetMATHCrossRefGoogle Scholar
  33. [32]
    C. A. B. Smith, Graphs and Composite Games,J. Comb. Theory, 1(1966), 51–58.MATHCrossRefGoogle Scholar
  34. C. A. B. Smith and W. T. Tutte, On Unicursal Paths in a Network of Degree 4,Amer. Math. Monthly, 48(1941), 233- 237.MathSciNetCrossRefGoogle Scholar
  35. [34]
    E. Steinitz, Polyeder und Raumentetlungen,Encyclopädie der Mathematischen Wissenschaften, III AB 12(1922), 1–139.Google Scholar
  36. [35]
    W. T. Tutte, On Hamiltonian Circuits,J. London Math. Soc., 21(1946), 98–101.MathSciNetMATHCrossRefGoogle Scholar
  37. [36]
    W. T. Tutte, The Factorization of Linear Graphs,J. London Math. Soc., 22(1947) 107–111.MathSciNetMATHCrossRefGoogle Scholar
  38. [37]
    W. T. Tutte, The Dissection of Equilateral Triangles into Equilateral Triangles,Proc. Phil. Soc., 44(1948), 463–482.MathSciNetMATHGoogle Scholar
  39. [38]
    W. T. Tutte, The Factors of Graphs,Can. J. Math., 4(1952), 314–328.MathSciNetMATHGoogle Scholar
  40. [39]
    W. T. Tutte, A Theorem on Planar Graphs,Trans. Amer. Math. Soc., 82(1956), 99–116.MathSciNetMATHCrossRefGoogle Scholar
  41. [40]
    W. T. Tutte, A Non-Hamiltonian Planar Graph,Acta. Math. Acad. Sci. Hung., 11(1960), 371–375.MathSciNetMATHCrossRefGoogle Scholar
  42. [41]
    W. T. Tutte, A Census of Planar Triangulations,Can. J. Math., 14(1962), 21–38.MathSciNetMATHGoogle Scholar
  43. [42]
    W. T. Tutte, A Census of Hamiltonian Polygons,Can. J. Math., 14(1962), 402–417.MathSciNetMATHGoogle Scholar
  44. [43]
    W. T. Tutte, A Census of Slicings,Can. J. Math., 14(1962), 708–722.MathSciNetMATHGoogle Scholar
  45. [44]
    W. T. Tutte, A Census of Planar Maps,Can. J. Math., 15(1963), 249–271.MathSciNetMATHGoogle Scholar
  46. [45]
    W. T. Tutte, Connectivity in Gmphs,Toronto 1966.Google Scholar
  47. [46]
    W. T. Tutte, Graph Theory,New York 1984.MATHGoogle Scholar
  48. H. Walther, Ein kubischer planarer zyklisch fünffach zusammenhängender Graph, der keinen hamiltonkreis besitzt. Wiss. Z. Tech. Hochsch. Ilmenau, 11(1965), 163–166.MathSciNetMATHGoogle Scholar
  49. [48]
    H. Walther and H.-J. Voss, Uber Kreise in Graphen,Berlin 1974.Google Scholar
  50. [49]
    D. J. A. Welsh, Matroid Theory,London 1976.MATHGoogle Scholar
  51. [50]
    H. Whitney, The Coloring of Graphs,Ann. of Math., 33(1932), 688–718.MathSciNetCrossRefGoogle Scholar
  52. [51]
    H. Whitney, On the Abstract Properties of Linear Dependence,Amer. J. Math., 57(1935), 509–533.MathSciNetCrossRefGoogle Scholar
  53. [52]
    R. J. Wilson, An Eulerian Trail through Königsberg,J. Graph. Theory, 10(1986), 265–275.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1990

Authors and Affiliations

  • Dénes König

There are no affiliations available

Personalised recommendations