Effect of Antihypertensive Agents on Renal Function and on Sodium-Volume Status

  • Vito M. Campese
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 252)


The relationship between the state of sodium-volume balance and the genesis and maintenance of hypertension is very complex. One established notion is that any sustained rise of blood pressure is associated with an adaptation of the renal sodium excretion mechanisms, as mainfested by a rightward shift of the renal function curve (1). Thus, the kidney exerts a pivotal role in the genesis and/or maintenance of any forms of hypertension independent of its etiology. This implies that the ability of an antihypertensive agent to sustain a decrease in blood pressure depends in large part on its effects on renal function.


Glomerular Filtration Rate Essential Hypertension Plasma Volume Antihypertensive Agent Renal Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guyton AC, Coleman TG, Cowley AW Jr, Scheel KW, Manning RD Jr, Norman RA Jr: Arterial pressure regulation overriding dominance or the kidneys in long-term regulation and in hypertension. Am J Med 52:584–594, 1972.PubMedCrossRefGoogle Scholar
  2. 2.
    Blaustein MP, Hamlyn JM: Role of a natriuretic factor in essential hypertension: A hypothesis. Ann Int Med 98:785–792, 1983.PubMedGoogle Scholar
  3. 3.
    Tobian L, Johnson MA, Lange J, Magraw S: Effect of varying perfusion pressures on the output of sodium and renin and the vascular resistance in kidney of rats with “post-salt” hypertension and Kyoto spontaneous hypertension. Circ Res (Suppl I): 36, 37:161–170, 1975.Google Scholar
  4. 4.
    Dahl LK, Heine M: Primary role of renal homografts in setting blood pressure levels in rats. Circ Res 36:692–696, 1975.PubMedCrossRefGoogle Scholar
  5. 5.
    Kawabe K, Watanabe TX, Shiono K, Sokabe H: Influence of blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the F hybrids. Jap Heart J 19:886–893, 1978.PubMedCrossRefGoogle Scholar
  6. 6.
    Bianchi G, Fox Ü, DiFrancesco GF, Giovannetti AM, Pagetti D: Blood pressure changes produced by kidney crosstransplantation between spontaneously hypertensive rats (SHR) and normotensive rats (NR). Clin Sci Mol Med 47:435–448, 1974.PubMedGoogle Scholar
  7. 7.
    Grim CE, Luft FC, Miller JL, Brown PL, Gannon MA, Weinberger MH: Effects of sodium loading and depletion in normotensive first-degree relatives of essential hypertension. J Lab Clin Med 94:764–771, 1979.PubMedGoogle Scholar
  8. 8.
    Beierwalters WH, Arendshorst W, Klemmer PJ: Electrolytes and water balance in young spontaneously hypertensive rats. Hypertension 4:908–915, 1982.CrossRefGoogle Scholar
  9. 9.
    Guyton AC: Renal function curve. A key to understanding the pathogenesis of hypertension. Hypertension 10:1–6, 1987.PubMedCrossRefGoogle Scholar
  10. 10.
    Weber AB: Red-cell lithium-sodium counter transport and renal lithium clearance in hypertension. N Engl J Med 314:198–201, 1986.CrossRefGoogle Scholar
  11. 11.
    Cangiano JL, Rodriguez-Sargent C, Opava-Stitzer S, Martinez-Maldonado M: Renal Na+-K+ -ATPase in weanling and adult spontaneously hypertensive rats. Proc Soc Exp Biol Med 177:240–246, 1984.PubMedGoogle Scholar
  12. 12.
    Hollenberg NK, Borucki LJ, Adams DF: The renal vasculature in early essential hypertension: Evidence for a pathogenetic role. Medicine 57:167–178, 1978.PubMedCrossRefGoogle Scholar
  13. 13.
    Bianchi G, Cusi D, Guidi E: Renal hemodynamics in human subjects and in animals with genetic hypertension during the prehypertensive stage. Am J Nephrol 3:73–79, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Hollenberg NK, Adams DF, Solomon K, Chenitz WR, Burger BM, Abrams HL, Merrill JP: Renal vascular tone in essential and secondary hypertension: Hemodynamic and angiographic response to vasodilators. Medicine 54:29–44, 1975.PubMedCrossRefGoogle Scholar
  15. 15.
    Louis WJ, Doyle AE, Anavekar S: Plasma norepinephrine levels in essential hypertension. New Engl J Med 288:599–601, 1973.PubMedCrossRefGoogle Scholar
  16. 16.
    Dequattro V, Campese VM, Miura Y, Meier D: Increase plasma catecholamines in high renin hypertension. Am J Cardiol 38:801–804, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldstein DJ: Plasma norepinephrine in essential hypertension: A study of the studies. Hypertension 3:48–52, 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Lundin S, Thoren P: Renal function and sympathetic activity during mental stress in normotensive and spontaneously hypertensive rats. Acta Physiol Scand 115:115–124, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    McCarty R, Kopin IJ: Alterations in plasma catecholamines and behavior during acute stress in spontaneously hypertensive and Wistar-Kyoto normotensive rats. Life Sci 22:997–1006, 1978.PubMedCrossRefGoogle Scholar
  20. 20.
    Grobecker H, Saavedna JN, Roized HF, Weise V, Kopin IJ, Axelrod J: Peripheral and central catecholamines neurons in genetic and experimental hypertension in rats. Clin Sci Mol Med 51:377S-380S, 1976.Google Scholar
  21. 21.
    DeChamplain J, Krakoff LR, Axelrod J: Interrelationships of sodium intake, hypertension, and norepinephrine storage in the rat. Circ Res 24 (Suppl I): 75–92, 1969.Google Scholar
  22. 22.
    Anderson DE: Interactions of stress, salt and blood pressure. Ann Rev Physiol 46:143–153, 1984.CrossRefGoogle Scholar
  23. 23.
    DiBona GF: The functions of the renal nerves. Rev. Physiol Biochem Pharmacol 94:75–181, 1982.CrossRefGoogle Scholar
  24. 24.
    Bello-Reuss E: Effect of catecholamines on fluid reabosption by the isolated proximal convoluted tubule. Am J Physiol 238:F347-F352, 1980.PubMedGoogle Scholar
  25. 25.
    Schrier RW: Effects of adrenergic nervous system and catecholamines on systemic and renal hemodynamics, sodium and water excretion and renin secretion. Kidney Int 6:291–306, 1974.PubMedCrossRefGoogle Scholar
  26. 26.
    Weinberger MD, Luft FC, Henry DP: The role of the sympathetic nervous system in the modulation of sodium excretion. Clin Exp Hypert A4:719–735, 1982.CrossRefGoogle Scholar
  27. 27.
    Winternitz SR, Katholi RE, Oparil S: Role of the renal sympathetic nerves in the development and maintenance of hypertension in the spontaneously hypertensive rat. J Clin Invest 66:971–978, 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Kimura G, Saito F, Kojima S, et al: Renal function curve in patients with secondary forms of hypertension. Hypertension 10:11–15, 1987.PubMedCrossRefGoogle Scholar
  29. 29.
    Campese VM, Romoff MS, Levitan D, Saglikes Y, Friedler RM, Massry SG: Abnormal relationship between sodium intake and sympathetic nervous activity in salt-sensitive patients with essential hypertension. Kidney Int 21:371–378, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Conway J, Lauwers P: Hemodynamics and hypotensive effects of long-term therapy with chlorothiazide. Circulation 21:21–27, 1960.PubMedCrossRefGoogle Scholar
  31. 31.
    O’Connor DT, Preston RA, Stone RA: Renal vascular resistance falls during long-term thiazide treatment of essential hypertension. Clin Res 27:17A, 1979.Google Scholar
  32. 32.
    Aleksandrow D, Wysznacka W, Gajewski J: Influence of chlorothiazide upon arterial responsiveness to norepinephrine in hypertensive subjects. N Engl J Med 261:1052–1055, 1959.PubMedCrossRefGoogle Scholar
  33. 33.
    Veterans Administration Cooperative Study Group on antihypertensive agents: Effect of therapy on morbidity in hypertension. JAMA 202:1028–1034, 1967.CrossRefGoogle Scholar
  34. 34.
    Australian National blood pressure study management committee: The Australian therapeutic trial in mild hypertension. Lancet 1:1261–1267, 1980.Google Scholar
  35. 35.
    Multiple Risk Factor Intervention Trial Researh Group: Multiple Risk Factor Intervention Trial: Risk factors changes and mortality results. JAMA 248:2465–2477, 1982.Google Scholar
  36. 36.
    Medical Research Council Working Party: MRC trial of treatment of mild hypertension. Principal results. Br Med J 291:97–104, 1985.CrossRefGoogle Scholar
  37. 37.
    Kaplan NM: Clinical hypertension. Williams & Wilkins, Baltimore, 1986.Google Scholar
  38. 38.
    Meyer-Sebellek W, Götzen R, Heitz J, Arntz HR, Schulte KL: Serum lipoprotein levels during long-term treatment of hypertension with Indapamide. Hypertension 7 (Suppl II) II170-II174, 1985.CrossRefGoogle Scholar
  39. 39.
    Hollenberg NK: Vasodilators, antihypertensive therapy, and the kidney. Circulation 75 (Suppl V), V-39-V-42, 1987.Google Scholar
  40. 40.
    Campese VM: Minoxidil: A review of its Pharmacoligical properties and therapeutic use. Drugs 22:257–278, 1981.PubMedCrossRefGoogle Scholar
  41. 41.
    Klutsch VK, Schmidt P, Grobwendt J: Der Einflub von bay a 1040 auf die nierenfunktion des hypertonikers. Arzneimittelforschung 22:377–380, 1972.PubMedGoogle Scholar
  42. 42.
    Kinoshita M, Kukusawa R, Shimono Y, Motomura M, Tomonaga G, Hoshino T: Effects of diltiazem hydrochloride on renal hemodynamics and urinary electrolyte excretion. JPN Circ J 42:553–560, 1978.PubMedCrossRefGoogle Scholar
  43. 43.
    Zanchetti A, Leonetti G: Natriuretic effect of calcium antagonists. J. Cardiovasc Pharmacol 7: (Suppl 4) 33–37, 1985.CrossRefGoogle Scholar
  44. 44.
    Schmitz A: Acute renal effects of oral felodipine in normal man. Eur J Clin Pharmacol 32:17–22, 1987.PubMedCrossRefGoogle Scholar
  45. 45.
    Bauer JH, Sunderrajan S, Reams G: Effects of calcium entry blockers on renin-angiotensin-aldosterone system, renal function and hemodynamics, salt and water excretion and body fluid composition. Am J Cardiol 56:62H-67H, 1985.PubMedCrossRefGoogle Scholar
  46. 46.
    Chaignon M, Bellet M, Lucsko M, Rapoud C, Guedon J: Acute and chronic effect of a new calcium inhibitor, nicardipine, on renal hemodynamics in hypertension. J Cardiovasc Pharmacol 8:892–897, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Austin MB, Robson RA, Bailey RR: Effect of nifedipine on renal function of normal subjects and hypertensive patients with renal functional impairment. New Zeland Med J 96:829–831, 1983.Google Scholar
  48. 48.
    Leonetti G, Grandi KR, Terzoli L, Fruscio M, Rupoli L, Cuspidi C, Sampieri L, Zanchetti A: Effects of single and repeated doses of the calcium antagonist felodipine on blood pressure, renal function, electrolytes and water balance, and renin-angiotensin aldosterone system in hypertensive patients. J Cardiovasc Pharmacol 8:1243–1248, 1986.PubMedCrossRefGoogle Scholar
  49. 49.
    Blackshear JL, Orlandi C, Williams GH, Hollenberg NK: The renal response to diltiazem and nifedipine: Comparison with nitroprusside. J Cardiovasc Pharmacol 8:37–43, 1986.PubMedCrossRefGoogle Scholar
  50. 50.
    Steele TH, Challoner-Hue L: Renal interactions between norepinephrine and calcium antagonists. Kidney Int. 26:719–724, 1980.CrossRefGoogle Scholar
  51. 51.
    Bell PD, Navar LG: Cytoplasmic calcium in the mediation of macula densa tubuloglomerular feedback responses. Science 215:670–673, 1982.PubMedCrossRefGoogle Scholar
  52. 52.
    Blanc E, Sraer J, Sraer JD, Baud L, Arddillod R: Ca2+ and Mg2+. dependence of angiotensin II binding to isolated rat renal glomeruli. Biochem Pharmacol 27:517, 1978.PubMedCrossRefGoogle Scholar
  53. 53.
    DiBona GF: Effects of felodipine on renal function in animals. Drugs 29 (Suppl 2):168–175, 1985.PubMedCrossRefGoogle Scholar
  54. 54.
    Abe Y, Komori T, Miura K, et al: Effects of the calcium antagonist nicardipine on renal function and renin release in dogs. J Cardiovasc Pharmacol 5: 254–259, 1983.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang WC: Effects of verapamil alone and with Captopril on blood pressure and bilateral renal function in Goldblatt hypertensive rats. Clin Sci 70:453–460, 1986.PubMedGoogle Scholar
  56. 56.
    Leonetti G, Cuspidi C, Sampieri L, Terzoli L, Zanchetti A: Comparison of cardiovascular renal, and humoral effects of acute administration of two calcium channel blockers in normotensive and hypertensive subjects. J Cardiovasc Pharmacol 4:319–324, 1982.CrossRefGoogle Scholar
  57. 57.
    Sullivan JM, Adams DF, Hollenberg NK: Adrenergic blockade in essential hypertension: Reduced renin release despite renal vasoconstriction. Circ Res 39:532–536, 1976.PubMedCrossRefGoogle Scholar
  58. 58.
    Nies AS, McNeil JS, Schrier RW: Mechanism of increased sodium reabsorption during propranolol administration. Circulation 44:596–604, 1971.PubMedCrossRefGoogle Scholar
  59. 59.
    Ibsen H, Sederberg-Olsen P: Changes in glomerular filtration rate during long-term treatment with propranolol in patients with arterial hypertension. Clinical Science 44:129–134, 1972.Google Scholar
  60. 60.
    Bauer JH, Brooks CS; The long-term effect of propranolol therapy on renal function. Am J Med 66:405–410, 1979.PubMedCrossRefGoogle Scholar
  61. 61.
    Pedersen EB: Effect of sodium loading and exercise on renal haemodynamics and urinary sodium excretion in young patients with essential hypertension before and during propranolol treatment. ACTA Med Scand 201:365–373, 1977.PubMedCrossRefGoogle Scholar
  62. 62.
    O’Connor DT, Preston RA: Urinary kallikrein activity, renal hemodynamics, and electrolyte handling during chronic beta blockade with propranolol in hypertension. Hypertension 4:742–749, 1982.PubMedCrossRefGoogle Scholar
  63. 63.
    Warren DJ, Swanson CP, Wright N: Deterioration in renal function after beta blockade in patients with chronic renal failure and hypertension. Brit. Med J 2:193–194, 1974.PubMedCrossRefGoogle Scholar
  64. 64.
    Gordon RD: Effects of beta-adrenoreceptor blocking drugs on plasma volume, renin and aldosterone as components of their antihypertensive action. Drugs 11 (Suppl):156–163, 1976.PubMedCrossRefGoogle Scholar
  65. 65.
    Tarazi RC, Frölich ED, Dustan HR: Plasma volume changes with long-term beta-adrenergic blockade. Am Heart J 82:770–766, 1971.PubMedCrossRefGoogle Scholar
  66. 66.
    Bravo EL, Tarazi RC, Dustan HP: Beta-adrenergic blockade in diuretic-treated patients with essential hypertension. New Engl J Med 292:66–70, 1975.PubMedCrossRefGoogle Scholar
  67. 67.
    Wilkinson R, Stevens IM, Pickering M, Robson V, Hawkins T, Kerr DNS, Harry JD: Renal function exchangeable sodium, potassium and plasma renin in essential hypertensive treated with atenolol and propranolol. In: Cruickshank JM, McAinsh J, Caldwell ADS, Eds. Atenolol and Renal Function. R Soc Med Int Congr Symp Ser #19, Academic Press, London, pp. 45–49, 1980.Google Scholar
  68. 68.
    Waal-Manning HJ, Bolli P: Atenolol (vs) placebo in mild hypertension. Renal, metabolic and stress antipressor effects. Brit J Phamacol 9:553–560, 1980.Google Scholar
  69. 69.
    O’Callaghan WG, Laher MS, McGarry K, O’Brien ET, O’Malley K: Antihypertensive and renal haemodynamic effects of atenolol and nadolol in elderly hypertensive patients. Brit J Clin Pharmacol 14:135P-136P, 1982.Google Scholar
  70. 70.
    Hollenberg NK, Adams DF, McKinstry DN, Williams GH, Borucki LJ, Sullivan JM: Beta-adrenoceptor blocking agents and the kidney: Effect of nadolol and propranolol on the renal circulation. Brit J Clin Pharmacol 7: (Suppl 2):219s-222s, 1979.CrossRefGoogle Scholar
  71. 71.
    Textor SC, Fouad FM, Bravo EL, Tarazi RC, Vidt DG, Gifford RW, Jr: Redistribution of cardiac output to the kidneys during oral nadolol administration. New Engl J Med 307:601–605, 1982.PubMedCrossRefGoogle Scholar
  72. 72.
    O’Connor DT, Barg AP, Duchin KL: Preserved renal perfusion during treatment of essential hypertension with beta blocker nadolol. J Clin Pharmacol 22:187–195, 1982.PubMedGoogle Scholar
  73. 73.
    Lübbe WF: Antihypertensivè therapy with timolol and alpha methyldopa. A double-blind trial in patients with moderately severe hypertension. South African Med J 50:279–285, 1976.Google Scholar
  74. 74.
    Wallin JD: Antihypertensive and their impact on renal function. Am J Med 80 (Suppl 419):103–106, 1983.CrossRefGoogle Scholar
  75. 75.
    Pedersen EB, Larsen JS: Effect of propranolol and labetalol on renal hemodynamics at rest and during exercise in essential hypertension. Postgrad Med J 56:27–32, 1980.PubMedGoogle Scholar
  76. 76.
    Lant AF, McNabb RW, Noormohamed FH: Kinetic and metabolic aspects of enalapril action. J Hypertension (Suppl 2):S37-S42, 1984.Google Scholar
  77. Williams GH, Hollenberg NK: Accentuated vascular and endocrine response to SQ 20881 in hypertension. N Engl J Med 297:184–188, 1977,PubMedCrossRefGoogle Scholar
  78. 78.
    Reams GP, Bauer JH: Long-term effects of enalapril monotherapy and enalapril/hydrochlorothiazide combination therapy on blood pressure, renal function, and body fluid composition. J Clin Hypertension 2:55–63, 1986.Google Scholar
  79. 79.
    Navis G, DeJong PE, Donker AJ, Van Der Hem GK, DeZeeuw D: Moderate sodium restriction in hypertensive subjects: Renal effects of ACE-inhibition. Kidney Int 31:815–819, 1987.PubMedCrossRefGoogle Scholar
  80. 80.
    Navis GJ, DeZeeuw D, DeJong PE: Enalapril and the kidney: Renal vasodilation and natriuresis due to the inhibition of angiotensin II formation. J Cardiovasc Pharmacol 8:(Suppl 1) S30-S34, 1986.PubMedCrossRefGoogle Scholar
  81. 81.
    Sanchez RA, Marco E, Gilbert HB, Raffaele P, Brito M, Gimenez M, Moleao LI: Natriuretic effect and changes in renal hemodynamics induced by enalapril in essential hypertension. Drugs 30 (Suppl 1):49–58, 1985.PubMedCrossRefGoogle Scholar
  82. 82.
    Packer M, Medina N, Yushak M: Correction of dilutional hyponatremia in severe chronic heart failure by converting-enzyme inhibition. Ann Int Med 100:782–789, 1984.PubMedGoogle Scholar
  83. 83.
    Suki WN, Rouse D: Renal tubular actions of antihypertensive agents. Kidney Int (In Press).Google Scholar
  84. 84.
    Preston RA, O’Connor DT, Stone RA: Prazosin and renal hemodynamics: Arteriolar vasodilatation during therapy of essential hypertension in man. Journal of Cardiovascular Pharmacology 1:277–286, 1979.PubMedCrossRefGoogle Scholar
  85. 85.
    McNair A, Rasmussen S, Nielsen PE, Rasmussen K: The antihypertensive effect of prazosin on mild to moderate hypertension, changes in plasma volume, extracellular volume and glomerular filtration rate. ACTA Med Scand 207:413–416, 1980.PubMedCrossRefGoogle Scholar
  86. 86.
    Koshy MC, Mickley D, Bourgoignie J, Blaufox MD: Physiologic evaluation of a new antihypertensive agent: Prazosin HCl. Circulation. 55:533–537, 1977.PubMedCrossRefGoogle Scholar
  87. 87.
    Ibsen H, Rasmussen K, Aerenlund Jensen H, Leth A: Changes in plasma volume and extracellular fluid volume after addition of prazosin to propranolol treatment in patients with hypertension. Scand J Clin Lab Invest 38:425–429, 1978.PubMedCrossRefGoogle Scholar
  88. 88.
    Barbieri C, Ferrari C, Caldara R, Rampini P, Crossignani RM, Bergonzi M: Effects of chronic prazosin treatment on the renin-angiotensin-aldosterone system in man. J Clin Pharmacol 21:418–423, 1981.PubMedGoogle Scholar
  89. 89.
    Myers JB, Morgan TD, Walker JN: Effect of prazosin on renal function in chronic congestive cardiac failure. Med J Australia 2:290–291, 1981.PubMedGoogle Scholar
  90. 90.
    Mohammed S, Hanenson IB, Magenheim HG, Gaffney TE: Effects of alpha-methyldopa on renal function in hypertensive patients. Amer Heart J 76:21–27, 1968.PubMedCrossRefGoogle Scholar
  91. Grabie M, Nussbaum P, Goldfarb S, Walker BR, Goldberg M, Agus ZS: Effects of methyldopa on renal hemodynamics and tubular function. Clin Pharmacol Ther. 27:522–627, 1980.PubMedCrossRefGoogle Scholar
  92. 92.
    Cruz F, O’Neill WM Jr, Clifton G, Wallin JD; Effect of labetalol and methyldopa on renal function. Clin Pharmacol Ther 30:57–63, 1981.PubMedCrossRefGoogle Scholar
  93. 93.
    Kauker ML: Inhibition of water reabsorption in the collecting tubule by guanabenz, an antihypertensive drug. Kidney Int 21:279A, 1982.Google Scholar
  94. Strandhoy J, Morris M, Buckalew VM: Renal effects of the antihypertensive, guanabenz, in the dog. J Pharmacol Exp Ther. 221:347–352, 1982.PubMedGoogle Scholar
  95. 95.
    Gehr M, MacCarthy EP, Goldberg M: Guanabenz; a centrally acting, natriuretic antihypertensive drug. Kidney Int 29:1203–1208, 1986.PubMedCrossRefGoogle Scholar
  96. 96.
    Bosanac P, Dubb J, Walker B, Goldberg M, Agus ZS: Renal effects of guanabenz: A new antihypertensive. J Clin Pharmacol 16:631–636, 1976.PubMedGoogle Scholar
  97. 97.
    Onesti G, Schwartz AB, Kim KE, Paz-Martines V, Swartz C: Antihypertensive effect of Clonidine. Circ Res (Suppl II) 28–29: II 53–11 69, 1971.Google Scholar
  98. 98.
    Bock KD, Merguet P, Heimsoth VH: Effect of Clonidine on regional blood flow an its use in the treatment of hypertension. In: 26th Hahnemann Symposium: Hypertension Mechanisms and Management Eds. G. Onesti KE Kim JH Moyer, New York, Grune & Stratton, pp. 395–403, 1973.Google Scholar
  99. 99.
    Thananopavarn C, Golub MS, Eggena P, Barrett JD, Sambhi MP: Clonidine, a centrally acting sympathetic inhibitor, as monotherapy for mild to moderate hypertension. Am J Cardiol 49:153–158, 1982.PubMedCrossRefGoogle Scholar
  100. 100.
    Campese VM, Romoff M, Telfer N, Weidmann P, Massry SG: Role of sympathetic nerve inhibition and body sodium- volume in the antihypertensive action of Clonidine in essential hypertension. Kidney Int. 18:351–357, 1980.PubMedCrossRefGoogle Scholar
  101. 101.
    Campese VM, Levitan D, Romoff MS, Saglikes Y, Sajo I, Massry SG: Effect of sympathetic nerve inhibition on the state of sodium-volume balance in hypertensive patients with normal or impaired renal function. Clin Sci 63:301s-303s, 1982.Google Scholar
  102. 102.
    Schmitt H: The pharmacology of Clonidine and related products. In: Antihypertensive agents. Eds. F. Gross, Berlin, Heidelberg, New York, Springer-Verlag, pp. 299–396, 1977.Google Scholar
  103. 103.
    Davidov M, Kakaviatos N, Finnerty FA: The antihypertensive effects of an imidazoline compound. Clin Pharmacol Ther. 8:810–816, 1967.PubMedGoogle Scholar
  104. 104.
    DiBona GF: Neurogenic regulation of renal tubular sodium reabsorption. Am Physiol 233:F73-F81, 1977.Google Scholar
  105. 105.
    Koepke JP, DiBona GF: Central adrenergic receptor control of renal function in conscious hypertensive rats. Hypertension 8:133–141, 1986.PubMedCrossRefGoogle Scholar
  106. 106.
    Rouse D, Suki WN: Alpha -Adrenergic inhibition of fluid absorption in the rabbit proximal convoluted renal tubule Kidney Int (In Press).Google Scholar
  107. 107.
    Krothapalli RK, Suki WN: Functional characterization of the alpha adrenergic receptor modulating the hydroosmotic effect of Vasopressine on the rabbit cortical collecting tubule. J Clin Invest 73:740–749, 1984.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Vito M. Campese
    • 1
  1. 1.Department of MedicineUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations