Lithium Induced Polyuria and Polydipsia

  • Giuseppe Passavanti
  • Erasmo Buongiorno
  • Giuseppina De Fino
  • Giulio Rutigliano
  • Michele Giannattasio
  • Pasquale Coratelli
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 252)


It is well known that lithium carbonate, which is frequently used in the treatment of psychiatric disorders,can induce a syndrome characterized by polyuria and polydipsia (1). According to the various investigators, these clinical findings appear in a range between 20% and 70% of the patients treated (2,3,4,5,6,7). Lithium-induced polyuria and polydipsia may be due to primary polydipsia with secondary polyuria or to primary polyuria with secondary polydipsia. In support of the above-mentioned alternatives, it has been reported that lithium may stimulate thirst or may interfere with the ADH-dependent mechanisms. Experimental studies on rats have demonstrated that lithium can stimulate thirst (8,9,10,11). Other experimental studies on rats have demonstrated that lithium can deplete the posterior pituitary gland and the supra-optic nuclei of their neuro-endocrine material (12,13), showing that lithium may interfere with the synthesis, deposit and/or release of the ADH hormone, causing central diabetes insipidus. On the other hand, another cause which has been suggested is an interference by the lithium with the tubular renal action of the ADH, causing nephrogenic diabetes insipidus (14,15,16,17). In contrast, however, some authors were unable, under somewhat different experimental conditions, to detect a lithium-induced inhibition of the ADH -stimulated water flow in toads’ urinary bladders (18).


Diabetes Insipidus Plasma Osmolality Urinary Osmolality Nephrogenic Diabetes Insipidus Central Diabetes Insipidus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Schou, Lithium in psychiatric therapy, Psychopharmacologia.1: 65 (1959).PubMedCrossRefGoogle Scholar
  2. 2.
    J.N. JR Forrest, A.D. Cohen, J. Torretti, J.M. Himmelhoch, F.H. Epstein, On the mechanism of lithium-induced diabetes insipidus in man and the rat, J. Clin. Invest. 53: 1115 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Schou, P.C. Baastrup, P. Grof, P. Weis, J.Angst, Pharmacological and clinical problems of lithium prophylaxis, Br. J. Psychiatry 116: 615 (1970).PubMedCrossRefGoogle Scholar
  4. 4.
    J.L. Marini, M.H. Sheard, Sustained-release lithium carbonate in a double-blind study: serum lithium levels, side effects, and placebo response, J. Clin. Pharmacol. 16: 276 (1976)PubMedGoogle Scholar
  5. 5.
    W.O. Williams, A.Z. Györy,Aspects of the use of lithium for the non-psychiatrist, Aust. NZ J. Med. 6: 233 (1976).CrossRefGoogle Scholar
  6. 6.
    P.L. Padfield, S.J. Park, J.J. Morton, A.E. Braidwood, Plasma levels of antidiuretic hormone in patients receiving prolonged lithium therapy, Br. J. Psychiatry 130: 144 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    P.H. Baylis, D.A. Heath, Water disturbances in patients treated with oral lithium carbonate, Ann. Incern. Med. 88: 607 (1978).Google Scholar
  8. 8.
    J.N. Galla, J.N. Forresit, B. Hecht, M. Kashgarian, J.P. Hayslett, Effect of liuhium on water and electrolyte metabolism, Yale J. Biol. Med. 48: 305 (1975).PubMedGoogle Scholar
  9. 9.
    D.F. Smith, S. Balagura, M. Lubran, Antidotal thirst: a response to intoxication. Science 167: 297 (1970)PubMedCrossRefGoogle Scholar
  10. 10.
    D.F. Smith, S. Balagura, Sodium appetite in rats given lithium. Life Sci. 11: 1021 (1972).CrossRefGoogle Scholar
  11. 11.
    M.H. Miskind, R.E. Greenspan, W.H. Bay, T.F. Ferris, Studies on lithium-induced polyuria, Clin.Res. 25: 596 A (1977).Google Scholar
  12. 12.
    G.L. Ellman, G.L. Gan, Lithium ion and water balance in rats, Toxicol. Appl. Pharmacol. 25: 617 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    S. Hochman, Y. Gutman, Lithium: ADH antagonism and ADH independent action in rats with diabetes insipidus, Eur. J. Pharmacol. 28: 100 (1974).PubMedCrossRefGoogle Scholar
  14. 14.
    I. Singer, D. Rotenberg, J.B. Puschett, Lithium-induced nephrogenic diabetes insipidus: in vivo and in vitro studies, J.Clin.Invest. 51: 1081 (1972).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Singer, E.A. Franko, Lichium-induced ADH resistance in road urinary bladders. Kidney Int. 3: 151 (1973).PubMedCrossRefGoogle Scholar
  16. 16.
    C.A. Harris, F.A. Jenner, Some aspects of the inhibition of the action of antidiuretic hormone by lithium ions in the rat kidney and bladder of the toad Bufo marinus, Br. J. Pharmacol. 44: 223 (1972).PubMedCrossRefGoogle Scholar
  17. 17.
    C. Torpr-Pederson, N.A. Thorn, Acute effects of lithium on the action and release of ADH in rats. Acta Endocrinol. (Kbh) 73: 665 (1973)Google Scholar
  18. 18.
    P.J. Bencley, A. Wasserman, The effects of lithium on the permeability of an epithelial membrane, the toad urinary bladder, Biochim. Biophys. Acta 266: 285 (1972).CrossRefGoogle Scholar
  19. 19.
    A. Tausch, H. Stegner, R.D. Leake, H.G. Artman, and D.A. Fisher, Radioimmunoassay of arginine vasopressin in urine: development and applicacion, J. Clin. Endo. & Merab. 57: 111 (1983)Google Scholar
  20. 20.
    P.D. Miller, S.L. Dubovsky, K.M. McDonald, F.H. Katz, G.L. Robertson, R.W. Schrier, Central, renal and adrenal effects of lithium in man. Am. J. Med. 66: 797 (1979).PubMedCrossRefGoogle Scholar
  21. 21.
    P.L. Padfield, J.J. Morton, G.B.M. Lindop and G.C. Timbury, Lithium-induced nephrogenic diabetes insipidus; changes in plasma vasopressin and angiotensin II, Clin. Nephrol. 3: 220 (1975).Google Scholar
  22. 22.
    P.L. Padfield, S.J. Park, J.J. Morton and A.E. Braidwood, Plasma levels of antidiuretic hormone in patients receiving prolonged lithium therapy, Brit. J. Psychiatry 130: 144 (1977).CrossRefGoogle Scholar
  23. 23.
    R.P. Hullin, V.P. Coley, N.J. Birch, T.H. Thomas, D.B. Morgan, Renal function after long-term treatment with lithium, Br.Med.J. 1: 1457 (1979).PubMedCrossRefGoogle Scholar
  24. 24.
    A.J.M. Donker, E. Prins, S. Meijer, W.J. Sluiter, J.W.B.M. Van Berkestijn and L.C.W. Dols, A renal function study in 30 patients on long-term lithium therapy, Clin.Nephrol. 12: 254 (1979).PubMedGoogle Scholar
  25. 25.
    M. Cox, I. Singer, Lithium and wauer metabolism. Am.J.Med. 59: 153 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    D. Schlondorf, J.A. Satriano, Interactions of vasopressin, cAMP, and prostaglandins in toad urinary bladder. Am.J.Physiol. 248: F454 (1985).Google Scholar
  27. 27.
    K.H. Raymond, M.D. Lifschitz, Effect of prostaglandin on renal salt and water excretion. Am. J.Med. 80 (lA): 22 (1986).PubMedCrossRefGoogle Scholar
  28. 28.
    T.P. Dousa, O. Hechter, The effect of NaCl and liCl on vasopressin-sensitive adenyl cyclase. Life Sci 9: 765 (1970).CrossRefGoogle Scholar
  29. 29.
    N.P. Beck, S.W. Reed, B.B. Davis, Effeccs of lithium on renal concentration of cyclic AMP, Clin. ‘Res. 19: 684 (1971).Google Scholar
  30. 30.
    A. Geisier, O. Wraae, O.V. Olesen, Adenyl cyclase activity in kidneys of rats with lithium-induced polyuria. Acta Pharmacol. Toxicol. (Kbh) 31: 203 (1972).CrossRefGoogle Scholar
  31. 31.
    T.B. Dousa, Lithium: interaccion with ADH dependent cyclic AI4P system of human renal medulla, Clin.Res. 21: 2 82 (1973).Google Scholar
  32. 32.
    G. Eknoyan, G.R. Corey, J. Loomis, W.N. Suki, M. Martinez-Maldonado, Lithium-induced diabetes insipidus: effect on urinary cyclic AMP excretion and renal tissue adenylate cyclase activity, Clin.Res. 22: 524 (1974).Google Scholar
  33. 33.
    G.W. Rutecki, J.V. Nally, W.H. Bay, T.F. Ferris, The acute effects of lithium (Li) on renal function (abstract), Xth Annual Meeting American Society of Nephrology, Washington, D.C., November 20–22 (1977).Google Scholar
  34. 34.
    J. Orloff, J.S. Handler, S. Bergstrom, Effect of prostaglandin PGE, on the permeability response of toad bladder to vasopressin, theophylline, and adenosine 3’ – 5’– monophosphate. Nature 205: 397 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    J.J. Grantham, J.Orloff, Effect of prostaglandin E on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3’ – 5’– monophosphate, and theophylline, J.Clin. Invest. 47: 1154 (1968).PubMedCrossRefGoogle Scholar
  36. 36.
    F. Marumo, J.S. Eelman, Effects of Ca++ and prostaglandin E on vasopressin activation of renal adenyl cyclase, J.Clin.Invest. 50: 1613 (1971).PubMedCrossRefGoogle Scholar
  37. 37.
    A. Kalisker, D.C. Dyler, Inhibition of the vasopressinactivated adenyl cyclase from renal medulla by prostaglanins, Eur. J. Pharmacol. 20: 143 (1972).PubMedCrossRefGoogle Scholar
  38. 38.
    G.M. Lum, G.A. Aisenbrey, M.J. Dunn, T. Berl, R.W. Schrier, K.M. McDonald, In vivo effect of indomethacin to potentiate the renal medullary cyclic AMP response to vasopressin, J.Clin.Invest. 59:8 (1977).PubMedCrossRefGoogle Scholar
  39. 39.
    R. Locher, W. Vetter, L.H. Block, Interactions between 8-L-arginine vasopressin and prostaglandin E in human mononuclear phagocytes, J.Clin.Invest 71: 884 (1983).PubMedCrossRefGoogle Scholar
  40. 40.
    R.B. Clark, R.W. Butcher, Desensitization of adenylate cyclase in cultured fibroblasts with prostaglandin E and epinephrine, J.Biol.Chem. 254: 9373 (1979).PubMedGoogle Scholar
  41. 41.
    S. Kassis, P.H. Fishman, Different mechanism of desensitization of adenylate cyclase by isoproterenol and prostaglandin E in human fibroblasts, J.Biol.Chem. 2 57: 5312 (1982).Google Scholar
  42. 42.
    R.M. Burch, P.V. Malushka, 45Ca fluxes in isolated toad bladder epithelial cells: effects of agents which alter water or sodium transport, J.Pharmacol. Exp. Ther. 224: 108 (1983).PubMedGoogle Scholar
  43. 43.
    S.P. Nadler, S.C. Hebert, B.M. Brenner, Cholera toxin, forskolin, and PGE interactions in isolated perfused rabbit cortical collecting tubules (abstr.) Am.Soc.Nephrol. 17: 233 (A) (1984).Google Scholar
  44. 44.
    D. Schlondorff, C.P. Carvounis, Jacoby M., J.A. Satriano, and S.D. Levine, Multiple sites for interactions of prostaglandin and vasopressin in toad urinary bladder. Am. J. Physiol. 241: F625 (1981)PubMedGoogle Scholar
  45. 45.
    L. Somova, S. Zaharieva, M.Ivanova, Humoral factors involved in the regulation of sodium-fluid balance in normal man. Acta Physiol. Pharmacol. Bulg. 10: 29 (1984).PubMedGoogle Scholar
  46. 46.
    J.R. Anderson, T. Berl, K.M. McDonald, and R.W. Schrier, Evidence for an in vivo antagonism between vasopressin and prostaglandin in the mammalian kidney, J.Clin. Invest. 56: 420 (1975).PubMedCrossRefGoogle Scholar
  47. 47.
    T. Berl, A. Raz, H. Wald, J. Horowitz, and W. Czaczkes, Prostaglandin synthesis inhibition and the action of vasopressin: studies in man and rat. Am.J.Physiol. 232: F529 (1977).PubMedGoogle Scholar
  48. 48.
    H.J. Kramer, A. Backer, S. Hinzen, R. Dusing, Effects of inhibition of prostaglandin-synthesis on renal electrolyte excretion and concentrating ability in healthy man. Prostaglandins Med. 1:341 (1978)PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Giuseppe Passavanti
    • 1
  • Erasmo Buongiorno
    • 1
  • Giuseppina De Fino
    • 1
  • Giulio Rutigliano
    • 2
  • Michele Giannattasio
    • 1
  • Pasquale Coratelli
    • 1
  1. 1.Institute of NephrologyUniversity of BariBariItaly
  2. 2.Institute of PsychiatryUniversity of BariBariItaly

Personalised recommendations