Hypercalcemia and the Kidney

  • Wadi N. Suki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 252)


Infrequently, the kidney may be involved in the etiology of hypercalcemia as might occur in diuretic-induced hypercalcemia (1) or the hypercalcemia of adrenal insufficiency (2), in which hypocalciuria and sodium and water diuresis may play a role. In these circumstances, the kidney may be considered the culprit in hypercalcemia. More often, however, the kidney is the victim of hypercalcemia suffering a number of derangements in hemodynamics and tubular function. The focus of this review shall be on the derangements in the structure and function of the kidney in hypercalcemic states. The spectrum of disorders of renal function and structure in hypercalcemia is summarized in Table 1. It is evident that a wide-range of renal derangements is observed in hypercalcemia. Consequently, only a few of these derangements will be the subject of a more detailed discussion.


Primary Hyperparathyroidism Phorbol Myristate Acetate Metabolic Alkalosis Renal Plasma Flow Proximal Convoluted Tubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.N. Suki, Effects of diuretics on calcium metabolism. Min. Elect. Metab., 2:125 (1979).Google Scholar
  2. 2.
    M. Walser, B.H. B. Robinson, and J.W. Duckett Jr., The hypercalcemia of adrenal insufficiency, J. Clin. Invest., 42:456 (1963).PubMedCrossRefGoogle Scholar
  3. 3.
    C.A. Edvall, Renal function in hyperparathyroidism. A clinical study of 30 cases with special reference to selective renal clearance and renal vein catheterization. Acta Chir. Scand., 229(Suppl):l (1958).Google Scholar
  4. 4.
    H.D. Humes, I. Ichikawa, J.L. Troy, and B.M. Brenner, Evidence for a parathyroid hormone-dependent influence of calcium on the glomerular filtration, J. Clin. Invest., 61:32 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    G. Fulgraff, G. Heinz, E. Sparwald, and O. Heidenreich, Die Wirkung von Calcium auf die Renale Ausscheidung von Kalium und Wasser und auf den renalen Solutengradienten beim Hund, Naunyn- Schmiedebergs, Arch, Pharmak. u. exp. Path., 261:299 (1968).CrossRefGoogle Scholar
  6. 6.
    B.R. Edwards, R.A.L. Sutton, and J.H. Dirks, Effect of calcium infusion on renal tubular reabsorption in the dog. Am. J. Physiol. 227:13 (1974).PubMedGoogle Scholar
  7. 7.
    G.F. DiBona, Effect of hypercalcemia on renal tubular sodium handling in the rat. Am. J. Physiol. 220:49, 1971.PubMedGoogle Scholar
  8. 8.
    W.N. Suki, G. Eknoyan, F.C. Rector Jr., and D.W. Seldin, The renal diluting and concentrating mechanism in hypercalcemia. Nephron, 6:50 (1969).PubMedCrossRefGoogle Scholar
  9. 9.
    J-P. Guignard, N.F. Jones, and M.A. Barraclough, Effect of brief hypercalcaemia on free water reabsorption during solute diuresis: Evidence for impairment of sodium transport in Henle’s loop, Clin. Sci., 39:337 (1970).PubMedGoogle Scholar
  10. 10.
    V. Guttman, and C.W. Gottschalk, Micropuncture study of the effect of calcium on sodium transport in the rat kidney, Israel J. Med. Sci., 2:243 (1966).Google Scholar
  11. 11.
    M. Baum, and S.R. Hayes, Phorbol myristate acetate and dioctanoylglycerol inhibit transport in rabbit proximal convoluted tubule. Am. J. Physiol., 254:F9 (1988).PubMedGoogle Scholar
  12. 12.
    F.H. Epstein, and R. Whitham, The mode of inhibition by calcium of cell-membrane adenosine-triphosphatase activity, Biochem. J., 99:232 (1966).PubMedGoogle Scholar
  13. 13.
    J.F. Zilva, and J.P. Nicholson, Plasma phosphate and potassium levels in the hypercalcemia of malignant disease, J. Clin. Endocrinol. Metab., 36:1019 (1973).PubMedCrossRefGoogle Scholar
  14. 14.
    G.S. Brinton, W. Jubiz, L.D. Lagerqiust, Hypertension in primary hyperparathyroidism: The role of the renin-angiotensin system, J. Clin. Endocrinol. Metab., 41:1025 (1975).PubMedCrossRefGoogle Scholar
  15. 15.
    R.A.L. Sutton, Disorders of renal calcium excretion, Kidney Int., 23:665 (1983).PubMedCrossRefGoogle Scholar
  16. 16.
    R.A.L. Sutton, Plasma magnesium concentration in primary hyperparathyroidism, Brit. Med. J., 1:529 (1970).PubMedCrossRefGoogle Scholar
  17. 17.
    G.A. Quamme, Effect of hypercalcemia on renal tubular handling of calcium and magnesium. Can. J. Physiol. Pharmacol., 60:1275 (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    A.R. Lavender, and T.N. Pullman, Changes in inorganic phosphate excretion induced by renal arterial infusion of calcium. Am. J. Physiol., 205:1025 (1963).PubMedGoogle Scholar
  19. 19.
    D. Rouse, and W.N. Suki, Modulation of phosphate absorption by calcium in the rabbit proximal convoluted tubule, J. Clin. Invest., 76:630 (1986).CrossRefGoogle Scholar
  20. 20.
    E. Eisenberg, Effect of serum calcium level and parathyroid extracts on phosphate and calcium excretion in hypoparathyroid pateints, J. Clin. Invest., 44:942 (1965).PubMedCrossRefGoogle Scholar
  21. 21.
    H.O. Heinemann, Metabolic alkalosis in patients with hypercalcemia, Metab. (Clin. Exp.), 14:1137 (1965).CrossRefGoogle Scholar
  22. 22.
    A.A. Siddiqui, and D.R. Wilson, Primary hyperparathyroidism and proximal renal tubular acidosis: Report of two cases. Can. Med. Assoc. J. 106:654 (1972).PubMedGoogle Scholar
  23. 23.
    C.K. Crumb, M. Martinez-Maldonado, G. Eknoyan, and W.N. Suki, Effects of volume expansion, purified parathyroid extract, and calcium on renal bicarbonate absorption in the dog, J. Clin. Invest., 54:1287 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    T.D. McKinney, and P. Myers, Effect of calcium and phosphate on bicarbonate and fluid transport by proximal tubules in vitro. Kidney Int., 21:433 (1982).PubMedCrossRefGoogle Scholar
  25. 25.
    T.D. McKinney, and P. Myers, PTH inhibition of bicarbonate transport by proximal convoluted tubules. Am. J. Physiol., 39:F127 (1980).Google Scholar
  26. 26.
    H.N. Hulter, A. Sebastian, R.D. Toto, E.L. Bonner Jr., and L.P. Ilnicki, Renal and systemic acid-base effects of the chronic administration of hypercalcemia-producing agents: Calcitriol, PTH, and intravenous calcium. Kidney Int., 21:445 (1982)PubMedCrossRefGoogle Scholar
  27. 27.
    H.O. Heinemann, Reversible defect in renal ammonium excretion in patients with hypercalcemia, Metab., 12:792 (1963).Google Scholar
  28. 28.
    S.L. Cohen, M.C. Fitzgerald, P. Fourman, W.J. Griffith, and H.E. de Wardener, Polyuria in hyperparathyroidism. Quart. J. Med., 26:423 (1957).PubMedGoogle Scholar
  29. 29.
    M. Levi, L. Peterson, and T. Berl, Mechanism of concentrating defect in hypercalcemia. Role of polydipsia and prostaglandins. Kidney Int., 23:489(1983).Google Scholar
  30. 30.
    E.R. Serros, and M.A. Kirschenbaum, Prostaglandin-dependent polyuria in hypercalcemia. Am. J. Physiol., 241:F224 (1981).PubMedGoogle Scholar
  31. 31.
    J.B. Stokes, Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle: Selective inhibition of the medullary portion, J. Clin. Invest., 64:495 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    J.J. Grantham, J. Orloff, Effects of prostaglandin Eon the permeability response of the isolated collecting tubule to vasopressin, adenosine 3,5 monophosphate and theophylline, J. Clin. Invest., 47:1154 (1968).PubMedCrossRefGoogle Scholar
  33. 33.
    S. Goldfarb, Effects of calcium on ADH action in the cortical collecting tubule perfused in vitro. Am.J. Physiol., 243:F481 (1982).PubMedGoogle Scholar
  34. 34.
    G. Frindt, E.E. Windhager, and A. Taylor, Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am. J. Physiol., 243:F503 (1982).PubMedGoogle Scholar
  35. 35.
    M. Lorenzen, G. Frindt, A. Taylor, and E.E. Windhager, Quinidine effect on hydroosmotic response of collecting tubules to vasopressin and cAMP, Am. J. Physiol., 252:F1103 (1987).PubMedGoogle Scholar
  36. 36.
    S.M. Jones, G. Frindt, and E.E. Windhager, Effect of peritubular [Ca] or ionomycin on hydroosmotic response of CCTs to ADH or cAMP, Am. J. Physiol., 245:F240 (1988).Google Scholar
  37. 37.
    H.R. Jacobson, and M.D. Breyer, Phorbol myristate acetate, dioctanoylglycerol, and phosphatidic acid inhibit the hydroosmotic effect of vasopressin on rabbit cortical collecting tubule, J. Clin. Invest., 8:590 (1987).Google Scholar
  38. 38.
    D.C.H. Harris, P.A. Gabow, S.L. Linas, D.E. Rosendale, S.P. Guggenheim, and R.W. Schrier, Prevention of hypercalcemia-induced renal concentrating defect and tissue calcium accumulation, Am. J. Physiol., 251:F642 (1986).PubMedGoogle Scholar
  39. 39.
    M.G. Brunette, J. Vary, and S. Carriere, Hyposthenuria in hypercalcemia. A possible role of intrarenal blood-flow (IRBF) redistribution. Pflugers Arch. 350:9 (1974).PubMedCrossRefGoogle Scholar
  40. 40.
    N. Beck, H. Singh, and S.W. Reed, Pathogenic role of cyclic AMP in the impairment of urinary concentrating ability in acute hypercalcemia, J. Clin. Invest., 54:1049 (1974).PubMedCrossRefGoogle Scholar
  41. 41.
    K. Takaichi, S. Uchida, and K. Kurokawa, High Ca inhibits AVP-dependent cAMP production in thick ascending limbs of Henle, Am. J. Physiol., 250:F770 (1986).PubMedGoogle Scholar
  42. 42.
    C.E. Dent, Some problems of hyperparathyroidism, Brit. Med. J., 2:1419 (1962).PubMedCrossRefGoogle Scholar
  43. 43.
    H.M. Lloyd, Primary hyperparathyroidism. Analysis of the role of the parathyroid tumor. Medicine, 47:53 (1968).PubMedCrossRefGoogle Scholar
  44. 44.
    C.E. Ganote, D.J. Philipsborn, E. Chen, and F.A. Carone, Acute calcium nephrotoxicity: an electron microscopical and semiquantitative light microscopical study. Arch. Pathol., 99:650 (1975).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • Wadi N. Suki
    • 1
  1. 1.Renal SectionBaylor College of MedicineHoustonUSA

Personalised recommendations