Nuclear Studies Involving Intermediate Energy Projectiles

  • G. E. Walker
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 45)


Recently the nuclear physics community has begun to receive the first dividends on a major investment in the construction of intermediate energy (100 MeV — 1 GeV) accelerators. High precision data from such new accelerators in North America as Bates (MIT), IUCF (Indiana), LAMPF (Los Alamos), and TRIUMF (Vancouver) involving medium energy electron, photon, pion and proton projectiles is currently available for comparison with present theory and may stimulate new insights into the multi-faceted aspects of nuclear structure. Of course the flow of new data involving these probes is just beginning. In addition, high quality kaon-nucleus data is anticipated shortly, for example, from the AGS at Brookhaven. Since each probe has associated with it characteristic limitations and complications it is especially important to study the same nuclear excitations in similar regions of momentum transfer with different probes to obtain maximum benefit from the new accelerators. The purpose of these lectures is to give selected examples of the kinds of new data available and anticipated and to compare theory and experiment (or discuss predictions) for the various probes. We stress the complementarity of the various projectiles in elucidating nuclear structure.


Charge Exchange High Spin Momentum Transfer Inelastic Scattering Nuclear Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. DeForest, Jr. and J.D. Walecka, Advan. Phys. 15 (1966), 1.ADSCrossRefGoogle Scholar
  2. 2.
    K. Sawada, Phys. Rev. 106 (1957), 372.MathSciNetADSMATHCrossRefGoogle Scholar
  3. 3.
    D.J. Rowe and S.S.M. Wong, Nucl. Phys. A153 (1970), 561.ADSGoogle Scholar
  4. 4.
    V. Gillet and M.A. Malkanoff, Phys. Rev. B133 (1964), 1190.ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Fegeau, Phys. Rev. 104 (1956), 225.ADSCrossRefGoogle Scholar
  6. 6.
    H.F. Ehrenberg et al., Phys. Rev. 113 (1959),666.ADSCrossRefGoogle Scholar
  7. 7.
    G.E. Brown and M. Bolsterli, Phys. Rev. Lett. 1 (1959), 472.ADSCrossRefGoogle Scholar
  8. 8.
    T.W. Donnelly, J.D. Walecka, I. Sick and E.B. Hughes, Phys. Rev. Lett. 21 (1968), 1196.ADSCrossRefGoogle Scholar
  9. 9.
    I. Sick et al., Phys. Rev. Lett. 23 (1969), 1117.ADSCrossRefGoogle Scholar
  10. 10.
    T.W. Donnelly, J.D. Walecka, G.E. Walker and I. Sick, Phys. Lett. 32B (1970), 545.ADSGoogle Scholar
  11. 11.
    D.W. Rowe, S.S.M. Wong and H. Chow, Nucl. Phys. A298 (1978), 31.ADSGoogle Scholar
  12. 12.
    T.W. Donnelly and G.E. Walker, Ann. Phys. (N.Y.) 60 (1970), 209.ADSCrossRefGoogle Scholar
  13. 13.
    R.A. Lindgren, C.F. Williamson and S. Kowalski, Phys. Rev. Lett. 40 (1978), 504.ADSCrossRefGoogle Scholar
  14. 14.
    J. Lichtenstadt et al., Phys. Rev. Lett. 40 (1978), 1126.ADSCrossRefGoogle Scholar
  15. 15.
    W. Bertozzi, in Proceedings of the Conference on Electron and Photoexcitation, Sendai, Japan, 12–13 September 1977 (unpublished).Google Scholar
  16. 16.
    L. Zamick, Phys. Rev. Lett. 40 (1978), 381.ADSCrossRefGoogle Scholar
  17. 17.
    J.L. Matthews et al., Phys. Rev. Lett. 38 (1977), 8.ADSCrossRefGoogle Scholar
  18. 18.
    D.J.S. Findlay et al., Phys. Lett. 74B (1978), 305.ADSGoogle Scholar
  19. 19.
    D.J.S. Findlay and R.O. Owens, Nucl. Phys. A279 (1977), 385.ADSGoogle Scholar
  20. 20.
    J.T. Londergan and G.D. Nixon (submitted for publication).Google Scholar
  21. 21.
    J.T. Londergan, G.D. Nixon and G.E. Walker, Phys. Lett. 65B (1976), 427.ADSGoogle Scholar
  22. 22.
    G.W. Edwards and E. Rost, Phys. Rev. Lett. 18 (1971), 785.ADSCrossRefGoogle Scholar
  23. 23.
    M.G. Piepho and G.E. Walker, Phys. Rev. C9 (1974), 1352.ADSGoogle Scholar
  24. 24.
    M.K. Gupta and G.E. Walker, Nucl. Phys. A256 (1976), 444.ADSGoogle Scholar
  25. 25.
    R.H. Landau and F. Tabakin, Phys. Rev. D5 (1972), 2746.ADSGoogle Scholar
  26. 26.
    T.S.H. Lee and F. Tabakin, Nucl_ Phys. A226 (1974), 253.ADSCrossRefGoogle Scholar
  27. 27.
    C.B. Dover and G.E. Walker (accepted for publication in Phys. Rev. C).Google Scholar
  28. 28.
    T.S. H. Lee, University of Pittsburgh Ph.D. Thesis (1974).Google Scholar
  29. 29.
    F. Binon et al., Nucl. Phys. B17 (1970), 168.ADSCrossRefGoogle Scholar
  30. 30.
    B.R. Martin, Nucl. Phys. B94 (1975),413.ADSCrossRefGoogle Scholar
  31. 31.
    G.P. Gopal et al., Nucl. Phys. B119 (1977), 362.ADSCrossRefGoogle Scholar
  32. 32.
    G. Giacomelli et al., Nucl. Phys. B71 (1974), 138 (Solution D is used for the isospin zero amplitudes)ADSCrossRefGoogle Scholar
  33. G. Giacomelli et al., Nucl. Phys. B20 (1970), 301 (Solution (i) is used for the isospin one amplitudes).ADSCrossRefGoogle Scholar
  34. 33.
    J.T. Londergan, K.W. McVoy and E.J. Moniz, Ann. Phys. 86 (1974), 147.ADSCrossRefGoogle Scholar
  35. 34.
    H.K. Lee and H. McManus, Phys. Rev. 161 (1967), 1087.ADSCrossRefGoogle Scholar
  36. 35.
    P.J. Moffa and G.E. Walker, Nucl. Phys. A222 (1974), 140.ADSGoogle Scholar
  37. 36.
    G.S. Adams et al., Phys, Rev. Lett. 38 (1977), 1387.ADSCrossRefGoogle Scholar
  38. 37.
    A.D. Bacher and G.T. Emery (private communication).Google Scholar
  39. 38.
    M.H. MacGregor, R.A. Arndt and R.M. Wright, Phys. Rev. 182 (1969), 1714.ADSCrossRefGoogle Scholar
  40. 39.
    A. Picklesimer and G.E. Walker, Phys. Rev. C17 (1978), 237.ADSGoogle Scholar
  41. 40.
    D.E. Young and L.H. Johnston, Phys. Rev. 119 (1960), 313.ADSCrossRefGoogle Scholar
  42. 41.
    M.R. Wigan et al., Nucl. Phys. A114 (1968), 377.ADSGoogle Scholar
  43. 42.
    J.N. Palmieri, A.M. Cormack, N.F. Ramsey, and R. Wilson, Ann. Phys. (N.Y.) 1 (1958), 299.ADSCrossRefGoogle Scholar
  44. 43.
    G.F. Cox et al., Nucl. Phys. B4 (1967), 353.ADSGoogle Scholar
  45. 44.
    J. Tinlot and R.E. Warner, Phys. Rev. 124 (1961), 890.ADSCrossRefGoogle Scholar
  46. 45.
    J.R. Holt, J.C. Kluger and J.A. Moore, Proc, Phys. Soc. (London) 11 (1958), 781ADSCrossRefGoogle Scholar
  47. 46.
    R.G.P. Voss, J.J. Thresher and R. Wilson, Proc. Roy. Soc. (London) A229 (1958), 493.Google Scholar
  48. 47.
    T.C. Randle, Listed as private communication in R. Wilson, The Nucleon-Nucleon Interaction (Wiley, New York, 1963), p. 217.Google Scholar
  49. 48.
    J.P. Scanlon et al., Nucl. Phys. 41 (1963), 401.CrossRefGoogle Scholar
  50. 49.
    Y.M. Kazarinov, V.S. Kiselev, I.N. Silln and S.N. Sokolov, Zb. Eksp. Teor. Fiz. 41 (1961) 197 Sov. Phys. - JETP 14 (1962), 143.Google Scholar
  51. 50.
    J. dePangher, Phys. Rev. 99 (1955), 1447.ADSCrossRefGoogle Scholar
  52. 51.
    O. Chamberlain et al., Phys. Rev. 105 (1957), 288.ADSCrossRefGoogle Scholar
  53. 52.
    F. Betz et al., Pbys. Rev. 148 (1966), 1289.ADSCrossRefGoogle Scholar
  54. 53.
    G.H. Stafford, J.M. Dickson, D.C. Salter and M.K. Craddock, Nucl. Instrum. 15 (1962), 146.ADSCrossRefGoogle Scholar
  55. 54.
    G.H. Stafford, C. Whitehead and P. Hillman, Nuovo Cimento i (1957), 1589.Google Scholar
  56. 55.
    A. Langsford et al., Nucl. Phys. 74 (1965), 241.CrossRefGoogle Scholar
  57. 56.
    K. Amos, J. Morton, I. Morrison and R. Smith, Aust. J. Phys. 31 (1978), 1.ADSGoogle Scholar
  58. 57.
    H. Eikemeier and H.H. Hackenbroich, Nucl. Phys. A169 (1971), 407.ADSGoogle Scholar
  59. 58.
    G.E. Walker and D.L. Weiss, Bull. Am. Phys. Soc. 22 (1977), 1006; and to be submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • G. E. Walker
    • 1
  1. 1.Physics DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations