Advertisement

Participation of cAmp in Low pO2 Chemotransduction in the Carotid Body

  • T. Pérez-Gracía
  • L. Almarez
  • C. Gonzalez

Abstract

The carodit bodies (c.b.) are arterial chemoreceptors which by sensing blood pO2 and pH originate ventilatory reflexes directed to bring those blood parameters to normality. Structurally, the c.b. are formed by clusters of cells separated from each other by thin walls of connective tissue. Two types of cells are present in the clusters, type-I or chemoreceptor and type-II or sustentacular; the former cellular type exhibits a great number of dense-core vesicles and is known to contain a variety of neurotransmitters including dopamine (DA), norepinephrine (NE), acetylcholine (Ach), and different neuropeptides (met- and leu-enkephalins, substance P, and dynorphin) and contacts synaptically with the sensory fibers of the carotid sinus nerve (c.s.n.) (Fidone and Gonzalez, 1986). Type-II cells lack specialized organelles in their cytoplasms and are considered supportive elements with a glial-like function (Kondo et al., 1982). This structural organization and the available neurochemical data (see Fidone and Gonzalez, 1986) configurate the c.b. as composite receptors in which type-I cells detect the blood-born stimuli and respond releasing different neurotransmitters capable of setting the level of activity in the c.s.n. (Gonzalez et al., 1989).

Keywords

Adenylate Cyclase cAMP Level Carotid Body cAMP Content Increase cAMP Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avenet, C., Hofmann, F., and Lindermann, B., 1988, Transduction in the taste receptor cells requires cAMP-dependent protein kinase. Nature, 331:351.CrossRefGoogle Scholar
  2. Baker, E. M., Cheek, T. R., and Burgoyne, R. D., 1985, Cyclic AMP inhibits secretion from bovine adrenal chromaffin cells evoked by carbamyl- choline but not by high K+, Biochim. Biophys. Acta, 846:388.Google Scholar
  3. Baudry, M., Martres, M. P., and Schawartz, J. C., 1975, Hi and H2 receptors in the histamine-induced accumulation of cyclic AMP in guinea pig brain slices. Nature, 253:362.CrossRefGoogle Scholar
  4. Berne, R. M., Rail, T. W., and Rubio, R., 1983, “Regulatory Functions of Adenosine,” Martinus Nijhoff Publ., The Hague.CrossRefGoogle Scholar
  5. Collazos, J. M., and Sanchez, A., 1987, cAMP reduces the affinity of Ca++-triggered secretion in platelets, Febs. Lett., 215:183.CrossRefGoogle Scholar
  6. Daly, J. W., Bruns, R. F., and Snyder, S. H., 1981, Adenosine receptors in the central nervous system: relationship to the central actions of methylxanthines. Life Sci., 28:2083.CrossRefGoogle Scholar
  7. Delpiano, M. A., Starlinger, H., Fischer, H., and Acker, H., 1984, The cAMP content of the cat carotid body in vivo and in vitro under normoxia and after stimulation by hypoxia, in: “The Peripheral Arterial Chemoreceptors,” D. J. Pallot, ed., Croom Helm, London.Google Scholar
  8. Dinger, B., Gonzalez, C., Yoshizaki, K., and Fidone, S., 1981, (3H)spiroperidol binding in normal and denervated carotid bodies, Neurosci. Lett., 21:51.CrossRefGoogle Scholar
  9. Dinger, B., Gonzalez, C., Yoshizaki, K., and Fidone, S., 1985, Localization and function of cat carotid body nicotinic receptors. Brain. Res., 339:295.CrossRefGoogle Scholar
  10. Ferrendelli, J. A., Rubin, E. H., and Kinscherf, D. A., 1976, Influence of divalent cations on regulation of cyclic GMP and cyclic AMP levels in brain tissue, J. Neurochem., 26:741.CrossRefGoogle Scholar
  11. Fidone, S. J., and Gonzalez, C., 1986, Initiation and control of chemore- ceptor activity in the carotid body, “Handbook of Physiology. The Respiratory System II,” A. P. Fishmann, ed.. Am. Physiological Society, Bethesda.Google Scholar
  12. Fidone, S., Gonzalez, C., and Yoshizaki, K., 1982, Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro, J. Physiol., 333:93.Google Scholar
  13. Fitzgerald, R. S., Rogus, E. M., and Dehghani, A., 1977, Catecholamines and 3’,5’ cyclic AMP in carotid body chemoreception in the cat. Adv. Exp. Med. Biol., 98:245.Google Scholar
  14. Gonzalez, C., Obeso, A., Gomez Nino, A., Dinger, B., and Fidone, S., 1989, Biogenic amine and neuropeptide transmitters in carotid body chemotransmission: experimental findings and perspectives, J. Appl. Physiol., (in press).Google Scholar
  15. Gonzalez, E., Rigual, R., Fidone, S., and Gonzalez, C., 1987, Mechanisms £or termination of the action of dopamine in carotid body chemoreceptors, J. Auton. Nerv. Syst., 18:249.CrossRefGoogle Scholar
  16. Gusovsky, F., and Daly, J. W., 1988, Formation of second messengers in response to activation of ion channels in excitable cells. Cell Mol. Neurobiol., 8:157.CrossRefGoogle Scholar
  17. Hanbauer, I., 1977, Molecular biology of chemoreceptor function: Induction of tyrosine hydroxilase in the rat carotid body elicited by hypoxia, in; “Chemoreception in the Carotid Body,” H. Acker, S. Fidone, D. J. Fallot, C. Eyzaguirre, D. W. Liibbers, and R. W. Torrance, eds., Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  18. Huque, T., and Bruch, R. C., 1986, Odorant and guanine nucleotide stimulated phosphoinositide turnover in olfactory cilia, Biochem. Biophys. Res. Comm., 137:36.CrossRefGoogle Scholar
  19. Karczmar, A. G., 1987, Introduction to the session on modulators. Neuropharmacology, 26:1019.CrossRefGoogle Scholar
  20. Kondo, H., Iwanaga, T., and Nakajima, T., 1982, Immunocytochemical study on the localization of neuron specific enolase and S-100 protein in the carotid body of rats. Cell Tissue Res., 227:291.CrossRefGoogle Scholar
  21. Kow, L. M., and Pfaff, D. W., 1988, Neuromodulatory actions of peptides, Ann. Rev. Pharmacol. Toxicol., 28:163.CrossRefGoogle Scholar
  22. Lamb, T. D., 1986, Transduction in vertebrate photoreceptors: the role of cyclic GMP and calcium, TINS, 9:224.Google Scholar
  23. López-Barneo, J., López-López, J. R., Ureha, J., and Gonzalez, C., 1988 Chemotransduction in the carotid body: K+ current modulated by pO2 in type I chemoreceptor cells. Science, 241:580.CrossRefGoogle Scholar
  24. López-López, J., Gonzalez, C., Urena, J., and López-Barneo, J., 1989, Low pO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol., 93:1001.CrossRefGoogle Scholar
  25. Mir, A. K., Fallot, D. J., and Nahorski, S. R., 1983, Biogenic amine-stimulated cyclic adenosine-3’,5’-monophosphate formation in the rat carotid body, J. Neurochem., 41:663.CrossRefGoogle Scholar
  26. Morita, K., Dohi, T., Kitayama, S., Koyama, Y., and Tsujimoto, A., 1987, Stimulation-evoked Ca2+ fluxes in cultured bovine adrenal chromaffin cells are enhanced by forskolin, J. Neurochem., 48:248.CrossRefGoogle Scholar
  27. Nakamura, T., and Gold, G. H., 1987, A cyclic nucleotide gated conductance in olfatory receptor cilia. Nature, 325:442.CrossRefGoogle Scholar
  28. Nicoll, R. A., 1988, The coupling of neurotransmitter receptor to ion channels in the brain. Science, 241:545.CrossRefGoogle Scholar
  29. Pérez-Garcia, T., Almaraz, L., and Gonzalez, C., 1988, Modulation of the secretory response in carotid body chemoreceptor cells by adenylate cyclase activating agents, Abstr. Soc. Neurosci., 14:80.Google Scholar
  30. Prentki, M., and Matschinsky, F., 1987, Ca2+, cAMP and phospholipid-derived messengers in coupling mechanisms of insulin secretion, Physiol. Rev., 67:1185.Google Scholar
  31. Qu, Z. X., Fertel, R., Neff, N. H., and Hadjuconstantinou, 1989, Pharmacological characterization of rat retinal dopamine receptors, J. Pharmacol. Exp. Ther., 248:621.Google Scholar
  32. Rabe, C. S., and McGee, R., Jr., 1983, Regulation of depolarization-depen- dent release of neurotransmitters by adenosine: Cyclic AMP-depen- dent enhancement of release from PC12 cells, J. Neurochem., 41:1623.CrossRefGoogle Scholar
  33. Reuter, H., 1983, Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 301:569.CrossRefGoogle Scholar
  34. Ribeiro, J. A., and Sebastiao, A. M., 1986, Adenosine receptors and calcium: basis for proposing a third (A3) adenosine receptor. Prog. Neurobiol., 26:179.CrossRefGoogle Scholar
  35. Rubin, R. P., 1982, “Calcium and Cellular Secretion,” Plenum Press, New York.CrossRefGoogle Scholar
  36. Siegelbaum, S. A., Camardo, J. S., and Kandel, E. R., 1982, Serotonin and cyclic AMP close single K+ channels in aplysia sensory neurones. Nature, 299:413.CrossRefGoogle Scholar
  37. Soliven, B., Szuchet, S., Arnaso, B. G. W., and Nelson, D. J., 1988, Forskol in and phorbol esters decrease the same K+ conductance in cultured oligodendrocytes, J. Membrane Biol., 105:177.CrossRefGoogle Scholar
  38. Steiner, A. L., Parker, C. W., and Kipnis, D. M., 1970, The measurement of cyclic nucleotides by radioimmunoassay,in “Advances in Biochemical Psychopharmacology. Role of Cyclic AMP in Cell Punktion,” P. Greengard, and E. Costa, eds., Raven Press, Amsterdam.Google Scholar
  39. Stoclet, J. C., Gerard, D., Kilhoffer, M. C., Luignier, C., Miller, R., and Schaeffer, P., 1987, Calmodulin and its role in intracellular calcium regulation. Prog. Neurobiol., 29:321.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • T. Pérez-Gracía
    • 1
  • L. Almarez
    • 1
  • C. Gonzalez
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular y Fisiologia Facultad de MedicinaUniversidad de ValladolidValladolidSpain

Personalised recommendations