The Action of Carbon Dioxide in Central and Peripheral Chemoreceptors

  • R. W. Torrance


Here, I use some observations which have already been published on central chemoreceptors to consider whether those receptors contain a mechanism for responding to CO2 when it is in an unhydrated molecular form. The question has already been asked about the peripheral receptors2,3 and they are easier to work with, so I shall first give my argument as applied to them and then I shall consider whether central receptors can be dealt with similarly. It emerges that in both sets of receptors CO2 must first be hydrated before it can excite and hydration is usually much accelerated by carbonic anhydrase. I shall use this finding to consider where CO2 acts within the chemoreceptors.


Carbonic Anhydrase Carotid Body Taste Cell Central Receptor Peripheral Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. A. Hanson, P. C. G. Nye, and R. W. Torrance, The location of carbonic anhydrase in relation to the blood brain barrier at the medullary chemoreceptors of the cat, J. Physiol. 320:113 (1981).Google Scholar
  2. 2.
    A. M. S. Black, D. I. McCloskey, and R. W. Torrance, The responses of carotid body chemoreceptors in the cat to sudden changes in hypercapnic and hypoxic stimuli, Respir. Physiol. 13:36 (1971).CrossRefGoogle Scholar
  3. 3.
    D. M. Travis, Molecular CO2 is inert on the carotid chemorecéptors. Demonstration by inhibition of carbonic anhydrase, J. Pharmacol. Exp. Ther. 178:529 (1971).Google Scholar
  4. 4.
    J. J. Schuitmaker, A. Berkenbosch, J. DeGoede, and C. N. Olievier, Ventilatory responses to respiratory and metabolic acid-base disturbances in cats, Respir. Physiol. 67:69 (1987).CrossRefGoogle Scholar
  5. 5.
    J. J. Schuitmaker, A. Berkenbosch, J. DeGoede, and C. N. Olievier, Effects of CO2 and H+ on the ventilatory response to peripheral chemoreceptors stimulation, Respir. Physiol. 64:69 (1986).CrossRefGoogle Scholar
  6. 6.
    T. F. Hornbein, The relation between stimulus to chemoreceptors and their response, in: “Arterial Chemoreceptors,” R. W. Torrance, ed.. Blackwell, Oxford (1968).Google Scholar
  7. 7.
    M. A. Hanson, P. C. G. Nye, and R. W. Torrance, The exodus of an extra cellular bicarbonate theory of chemoreception and the genesis of an intracellular one, in: “Arterial Chemoreceptors,” C. Belmonte, D. J. Pallot, H. Acker, and S. Fidone, eds., Leicester University Press, Leicester (1981).Google Scholar
  8. 8.
    T. Ridderstrale and M. Hanson, Histochemical study of the distribution of carbonic anhydrase in the cat brain. Acta. Physiol. Scand. 124: 557 (1985).CrossRefGoogle Scholar
  9. 9.
    F. de Castro and M. Rubio, The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of the blood flow, in: “Arterial Chemoreceptors,” R. W. Torrance, eds.. Blackwell, Oxford (1968).Google Scholar
  10. 10.
    S. S. Fidone and C. Gonzalez, Initiation and control of chemoreceptor activity in the carotid body, “Handbook of Physiology III. The Respiratory System, Vol. 2, Part 1,” A. P. Fishman, N. S. Cherniack, J. G. Widdicombe, and S. R. Geiger, eds.. Am. Physiological Society, Bethesda (1986).Google Scholar
  11. 11.
    J. C. Eccles, “The Physiology of Synapses,” Springer, Berlin (1964).CrossRefGoogle Scholar
  12. 12.
    J. M. M. 0’Donnell, F. M. Ashcroft, H. F. Brown, and P. C. G. Nye, Single channel recordings from isolated carotid body cells, in; “Chemoreceptors and Reflexes in Breathing,” S. Lahiri, R. E. Forster II, R. O. Davies, and A. I. Pack, eds., Oxford University Press, New York (1989).Google Scholar
  13. 13.
    B. G. Dinger, L. J. Stensaas, and S. J. Fidone, Chemosensory endorgans reinnervated by normal and foreign nerves, in: “The Peripheral Arterial Chemoreceptors,” D. J. Pallot, ed.. Groom Helm, London (1984).Google Scholar
  14. 14.
    S. D. Roper, The cell biology of vertebrate taste receptors, Ann. Rev. Neurosci. 12:329 (1989).CrossRefGoogle Scholar
  15. 15.
    R. C. Thomas, Experimental displacements of intracellular pH and the mechanism of its subsequent recovery, J. Physiol. 354:3P (1984).Google Scholar
  16. 16.
    R. C. Thomas, Bicarbonate and pHi response. Nature 336:601 (1989).CrossRefGoogle Scholar
  17. 17.
    D. F. Donelly, E. Smith, and R. E. Dutton, Carbon dioxide versus H ion as a chemoreceptor stimulus. Brain Res. 245:136 (1982).CrossRefGoogle Scholar
  18. 18.
    R. A. Mitchell, Cerebrospinal fluid and the regulation of respiration,in “Advances in Respiratory Physiology,” C. G. Caro, ed., Arnold, London (1966).Google Scholar
  19. 19.
    F. L. Eldridge, J. P. Kiley, and D. E. Millhorn, Respiratory responses to medullary hydrogen ion changes in cats: different effects of respiratory and metabolic acidosis, J. Physiol. 358:285 (1985).Google Scholar
  20. 20.
    H. Shams, Differential effects of CO2 and H+ as central stimuli of respiration in the cat, J. Appl. Physiol. 58:357 (1985).Google Scholar
  21. 21.
    L. J. Teppema, P. W. J. A. Barts, H. Th. Folgering, and J. A. M. Evers, Effects of respiratory and (isocapnic) metabolic arterial acid-base disturbances on medullary extracellular fluid pH and ventilation in cats, Respir. Physiol. 53:379 (1983).CrossRefGoogle Scholar
  22. 22.
    M. A. Hanson, R. B. Holman, and H. B. McCooke, Further studies on carbonic anhydrase at the medullary chemoreceptors of the cat, in: “The Peripheral Arterial Chemoreceptors,” D. J. Pallot, ed. Croom Helm, London (1984).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • R. W. Torrance
    • 1
  1. 1.University Laboratory of PhysiologyOxfordUK

Personalised recommendations