Advertisement

The Aortic and Carotid Bodies of Chronically Hypoxic Spontaneously Hypertensive Rats (SHR)

  • J.-O. Habeck
  • C. Huckstorf
  • R. Behm

Abstract

The carotid bodies represent the most important peripheral arterial chemoreceptors. This is especially true for rats. Bilateral cutting of the carotid sinus nerve or glomectomy leads to severe disturbances in the regulation of breathing in this species (Cardenas and Zapata, 1983; Chiocchio et al., 1984; Hofer, 1986; Martin-Body et al., 1985; Olson et al., 1988). But there is also some evidence for a contribution of other paraganglia than the carotid bodies to respiratory regulation (Sinclair, 1987). Possible candidates are the aortic bodies. Functional experiments did not show any or only a small influence of the thoracic glomic tissue on the regulation of breathing in rats (Cardenas and Zapata, 1983; Martin- Body et al., 1985, 1986; Sapru and Krieger, 1977). Anatomical studies demonstrated different results regarding the presence of aortic bodies in rats of the Wistar and Long-Evans strain (Easton and Howe, 1983; Habeck et al., in press; Mc Donald and Blewett, 1981). The spontaneously hypertensive rats of the OKAMOTO-AOKI strain (SHR), however, represent a strain in which the aortic bodies are regularly detectable and in high numbers (Habeck et al., in press). Therefore, this strain may provide a suitable model for studies about the function of these chemoreceptors in rats.

Keywords

Recurrent Laryngeal Nerve Carotid Body Chronic Hypoxia Hypobaric Hypoxia Superior Laryngeal Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barer, G., and Walsh, M., 1979, Chronically hypoxic rat carotid bodies, J. Physiol., 290:38P.Google Scholar
  2. Barker, S. J., Castro, K., Howe, A., and Pack, R. J., 1984, Abdominal vagal paraganglia in the rat: hypertrophic response to chronic hypoxia, J. Physiol., 348:74P.Google Scholar
  3. Bee, D., Pallot, D. J., and Barer, G. R., 1986, Division of type 1 and endothelial cells in the hypoxic rat carotid body. Acta Anat., 126:226.CrossRefGoogle Scholar
  4. Blessing, M. H., and Wolff, H., 1973, Befunde am Glomus caroticum der Ratte nach Aufenthalt in einer simulierten Höhe von 7500 m, Virchows Arch. Abt. A Path. Anat., 360:79.CrossRefGoogle Scholar
  5. Böck, P., 1982, “The Paraganglia,” Springer-Verlag, Berlin-Heidelberg- New York.CrossRefGoogle Scholar
  6. Cardenas, H., and Zapata, P., 1983, Ventilatory reflexes originated from carotid and extracarotid chemoreceptors in rats. Am. J. Physiol., 244:R119.Google Scholar
  7. Chiocchio, S. R., Holton, S. M., Tramezzani, J. H., and Willshaw, P., 1984, Loss of peripheral chemoreflexes to hypoxia after carotid body removal in the rat, Respir. Physiol., 57:235.CrossRefGoogle Scholar
  8. Dahlqvist, A., Hellström, S., Carlsöö, B., and Pequignot, J. M., 1987, Paraganglia of the rat recurrent laryngeal nerve after long-term hypoxia: a morphometric and biochemical study, J. Neurocytol., 16: 289.CrossRefGoogle Scholar
  9. Easton, J., and Howe, A., 1983, The distribution of thoracic glomus tissue (aortic bodies) in the rat. Cell Tissue Res., 232:349.CrossRefGoogle Scholar
  10. Edwards, C., Heath, D., Harris, P., Castillo, Y., Krüger, H., and Arias- Stella, J., 1971, The carotid body in animals at high altitude, J. Pathol., 104:231.CrossRefGoogle Scholar
  11. Habeck, J.-O., Huckstorf, C., and Behm, R., 1988a, The paraganglia within the carotid bifurcation regions of young and old spontaneously hypertensive rats (SHR) after exposure to chronic hypobaric hypoxia.I. The carotid bodies, Anat. Anz., 165:45.Google Scholar
  12. Habeck, J.-O., Huckstorf, C., and Behm, R., 1988b, The paraganglia within the carotid bifurcation regions of young and old spontaneously hypertensive rats (SHR) after exposure to chronic hypobaric hypoxia. II. The carotid body-like organs, Anat. Anz., 167:47.Google Scholar
  13. Habeck, J.-O., Przybylski, J., Szepek, A., and Huckstorf, C., The aortic bodies of spontaneously hypertensive (SHR) and normotensive rats - A study concerning location and size, Anat. Anz., in press.Google Scholar
  14. Hansen, J.T., 1981, Innvervation of the rat aortic (subclavian) body: An ultrastructural study following axonal degeneration, J. Ultrastruct. Res., 74:83.CrossRefGoogle Scholar
  15. Hofer, M. A., 1986, Role of carotid sinus and aortic nerves in respiratory control of infant rats. Am. J. Physiol., 251:R811.Google Scholar
  16. Kummer, W., Addicks, K., and Heym, C., 1986, Heterogeneity of supracardic paraganglia, J. Auton. Nerv. Syst., Suppl.:289.Google Scholar
  17. Laidler, P., and Kay, J. M., 1975a, A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 metres, J. Pathol., 117:183.CrossRefGoogle Scholar
  18. Laidler, P., and Kay, J. M., 1975b, The effect of chronic hypoxia on the number and nuclear diameter of type 1 cells in the carotid bodies of rats. Am. J. Pathol., 79:311.Google Scholar
  19. Martin-Body, R. L., Robson, G. J., and Sinclair, J. D., 1985, Respiratory effects of sectioning the carotid sinus glossopharyngeal and abdominal vagal nerves in the awake rat, J. Physiol., 361:35.Google Scholar
  20. Martin-Body, R. L., Robson, G. J., and Sinclair, J. D., 1986, Restoration of hypoxic respiratory responses in the awake rat after carotid body denervation by sinus nerve section, J. Physiol., 380:61.Google Scholar
  21. MC Donald, D. M., and Blewett, R. W., 1981, Location and size of carotid body-like organs (paraganglia) revealed in rats by the permeability of blood vessels to Evans blue dye, J. Neurocytol., 10:607.CrossRefGoogle Scholar
  22. Mc Donald, D. M., and Haskell, A., 1987, Ultrastructural changes induced in the rat carotid bodies and superior laryngeal nerve paraganglia by chronic hypoxia, Exp. Brain Res., 16:261.Google Scholar
  23. Olson, E. B., Vidruk, E. H., and Dempsey, J. A., 1988, Carotid body excision significantly changes ventilatory control in awake rats, J. Appl. Physiol., 64:666.CrossRefGoogle Scholar
  24. Pequignot, J.-M., and Hellström, S., 1983, Intact and symathectomized carotid bodies of long-term hypoxic rats, Virchows Arch. Abt. A Path. Anat., 400:235.CrossRefGoogle Scholar
  25. Sapru, H.N., and Krieger, A.J., 1977, Carotid and aortic chemoreceptor function in the rat, J. Appl. Physiol., 42:344.Google Scholar
  26. Sinclair, J. D., 1987, Respiratory drive in hypoxia: Carotid body and other mechanisms compared, NIPS, 2:57.Google Scholar
  27. Wickel, F., Kummer, W., and Addicks, K., 1985, Die terminale Strombahn der supracardialen Paraganglien der Ratte, Verh. Anat. Ges., 79:523.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J.-O. Habeck
    • 1
  • C. Huckstorf
    • 2
  • R. Behm
    • 2
  1. 1.Institute of PathologyBezirkskrankenhaus Friedrich WolfKarl-Marx-StadtGDR
  2. 2.Institute of PhysiologyWilhelm-Pieck-UniversityRostockGDR

Personalised recommendations