Advertisement

The Increased Catecholamine Content in the Carotid Bodies of Spontaneously Hypertensive Rats

  • J. Przybylski
  • P. Janicki
  • A. Trzebski

Summary

The content of noradrenaline and dopamine in the carotid bodies of spontaneously hypertensive rats of Okamoto-Aoki strain was found to be significantly higher than in normotensive Wistar rats. The concentration of dopamine was found to predominate over that of noradrenaline in carotid bodies of normotensive rats, whereas the concentration of these catecholamines was equal in the carotid bodies of spontaneously hypertensive rats. The level of catecholamines in the carotid bodies of renal hypertensive rats did not differ from the control values. The content of serotonin was comparable in all groups of animals. We postulate that the increased level of catecholamines in the carotid bodies of spontaneously hypertensive rats is a biochemical marker of an augmented activity of carotid chemoreceptors in this strain of rats.

Keywords

Carotid Body Glomic Cell Renal Hypertension Arterial Chemoreceptor Carotid Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Przybylski, Alveolar hyperventilation in young spontaneously hypertensive rats, IRCS Med. Sci. 6:315 (1978).Google Scholar
  2. 2.
    J. Przybylski, Do arterial chemoreceptors play a role in the patho genesis of hypertension, Med. Hypotheses 7:127 (1981).CrossRefGoogle Scholar
  3. 3.
    A. Trzebski, M. Tafil, M. Zoltowski, and J. Przybylski, Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension, Cardiovasc. Res. 16:163 (1982).CrossRefGoogle Scholar
  4. 4.
    J. Przybylski, A. Trzebski, T. Czyzewski, and J. Jodkowski, Responses to hyperoxia, hypoxia, hypercapnia and almitrine in spontaneously hypertensive rats. Bull. Europ. Physiopath. Resp. 18:145 (1982).Google Scholar
  5. 5.
    Y. Fukuda, A. Sato, and A. Trzebski, Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats, J. Auton. Nerv. Syst. 19:1 (1987).CrossRefGoogle Scholar
  6. 6.
    J. Arias-Stella and J. Valcarcel, Chief cells hyperplasia in the human carotid body at high altutudes. Physiologic and pathologic significance. Hum. Pathol. 7:361 (1976).CrossRefGoogle Scholar
  7. 7.
    F. Lange, Vergrösserung des Glomus caroticum bei allen Formen der Hypertonie, Dtsch. Med. Wschr. 87:13 (1962).CrossRefGoogle Scholar
  8. 8.
    C. Edwards, D. Heath, and P. Harris, The carotid body in emphysema and left ventricular hypertrophy, J. Path., 104:1 (1971).CrossRefGoogle Scholar
  9. 9.
    J.-O. Habeck, A. Honig, C. Pfeiffer, and M. Schmidt, The carotid bodies in spontaneously hypertensive (SHR) and normotensive rats - a study concerning size, location and blood supply, Anat. Anz. 150:374 (1981).Google Scholar
  10. 10.
    P. Smith, R. Jago, and D. Heath, Glomic cells and blood vessels in the hyperplastic carotid bodies of spontaneously hypertensive rats, Cardiovasc. Res. 18:471 (1984).CrossRefGoogle Scholar
  11. 11.
    J.-O. Habeck and C. Huckstorf, The carotid bodies of spontaneously hypertensive rats after long term antihypertensive treatment with propranolol, Biomed. Biochim Acta, 12:915 (1987).Google Scholar
  12. 12.
    R. K. Steele and H. Hinterberger, Catecholamines and 5 hydroxytrypt-amine in the carotid body in vascular, respiratory and other diseases, J. Lab. Clin. Med. 80:63 (1972).Google Scholar
  13. 13.
    C. Eyzaguirre and S. Fidone, Transduction mechanisms in carotid body: glomus cells putative neurotransmitters, and nerve endings. Am. J. Physiol. 239:C135 (1980).Google Scholar
  14. 14.
    C. Wilson and F. M. Byrom, The vicious circle in chronic Bright’s disease. Experimental evidence from the hypertensive rat. Quart. Med. Rev. 10:65 (1941).Google Scholar
  15. 15.
    A. J. Dunn and N. R. Hall, Thymic extracts and lymphokine-containing supernatant fluids stimulate the pituary-adrenal axis, but not cerebral catecholamine or indolamine metabolism. Brain Behav. Immunity 1:113 (1987).CrossRefGoogle Scholar
  16. 16.
    J. E. Angell-James, J. A. Clarke, M. deB. Daly, and A. Taton, Carotid body chemoreceptor function and structure in experimental renal hypertensive rabbits, J. Physiol. 326:30P (1982).Google Scholar
  17. 17.
    J.-O. Habeck, C. Kreher, C. Kuckstorf, and R. Behm, The carotid bodies of renal hypertensive rats, Anta. Anz. 163:49 (1987).Google Scholar
  18. 18.
    J.-O. Habeck, C. Kuckstorf, and V. Moritz, A comparison of carotid body volumes in normotensive Wistar rats (NWR), Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), Biomed. Biochim. Acta 46:907 (1987).Google Scholar
  19. 19.
    D. J. Pallot and G. R. Barer, Some observations on the carotid bodies of the New Zealand strain of genetically hypertensive rats. Acta Physiol. Pol. 36:65 (1985).Google Scholar
  20. 20.
    H. Alho, M. Partanen, J. Koistinaho, A. Vaalasti, and A. Hervonen, Histochemically demonstrable catecholamines in sympathetic ganglia and carotid body of spontaneously hypertensive and normotensive rats. Histochemistry 80:457 (1984).CrossRefGoogle Scholar
  21. 21.
    S. Hellström, I. Hanbauer, J. Commissiong, F. Kaorum, and S. Koslow, Role and regulation of catecholamines in carotid body, in: “Dynamics of Neurotransmitter Function,” I. Hanin, ed.. Raven Press, New York (1984).Google Scholar
  22. 22.
    J. M. Pequignot, J. M. Cottet-Emard, Y. Dalmaz, M. De Haut De Sigy, and L. Peyrin, Biochemical evidence for norepinephrine stores outside the sympathetic nerves in rat carotid body. Brain Res. 367: 238 (1986).CrossRefGoogle Scholar
  23. 23.
    I. Hanbauer and S. Hellström, The regulation of dopamine and nor adrenaline in the rat caotid body and its modification by denervation and by hypoxia, J. Physiol. 282:21 (1978).Google Scholar
  24. 24.
    C. Gonzales and S. Fidone, Increased release of H-dopamine during low O2 stimulation of rabbit carotid body in vitro, Neurosci. Lett. 6:95 (1977).CrossRefGoogle Scholar
  25. 25.
    S. Fidone, C. Gonzales, and K. Yoshizaki, A study of the relationship between dopamine release and chemosensory discharge from the rabbit carotid body in vitro: preliminary findings, “Arterial Chemo- receptors,” C. Belmonte, D. J. Pallot, H. Acker, S. Fidone, eds., Leicester University Press (1981).Google Scholar
  26. 26.
    Y. Dalmaz, J. M. Pequignot, J. M. Cottet-Emard, E. Tavitian, and L. Peyrin, Sustained enhancement of the catecholamine dynamics in rat carotid bodies, adrenals, sympathetic ganglia and target organs under long term moderate hypoxia, Biomed. Biochim. Acta 46:899 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Przybylski
    • 1
  • P. Janicki
    • 1
  • A. Trzebski
    • 1
  1. 1.Depts. of Physiology and PharmacologyMedical AcademyWarsawPoland

Personalised recommendations