Skip to main content

The Increased Catecholamine Content in the Carotid Bodies of Spontaneously Hypertensive Rats

  • Chapter
Chemoreceptors and Chemoreceptor Reflexes

Summary

The content of noradrenaline and dopamine in the carotid bodies of spontaneously hypertensive rats of Okamoto-Aoki strain was found to be significantly higher than in normotensive Wistar rats. The concentration of dopamine was found to predominate over that of noradrenaline in carotid bodies of normotensive rats, whereas the concentration of these catecholamines was equal in the carotid bodies of spontaneously hypertensive rats. The level of catecholamines in the carotid bodies of renal hypertensive rats did not differ from the control values. The content of serotonin was comparable in all groups of animals. We postulate that the increased level of catecholamines in the carotid bodies of spontaneously hypertensive rats is a biochemical marker of an augmented activity of carotid chemoreceptors in this strain of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Przybylski, Alveolar hyperventilation in young spontaneously hypertensive rats, IRCS Med. Sci. 6:315 (1978).

    Google Scholar 

  2. J. Przybylski, Do arterial chemoreceptors play a role in the patho genesis of hypertension, Med. Hypotheses 7:127 (1981).

    Article  Google Scholar 

  3. A. Trzebski, M. Tafil, M. Zoltowski, and J. Przybylski, Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension, Cardiovasc. Res. 16:163 (1982).

    Article  Google Scholar 

  4. J. Przybylski, A. Trzebski, T. Czyzewski, and J. Jodkowski, Responses to hyperoxia, hypoxia, hypercapnia and almitrine in spontaneously hypertensive rats. Bull. Europ. Physiopath. Resp. 18:145 (1982).

    Google Scholar 

  5. Y. Fukuda, A. Sato, and A. Trzebski, Carotid chemoreceptor discharge responses to hypoxia and hypercapnia in normotensive and spontaneously hypertensive rats, J. Auton. Nerv. Syst. 19:1 (1987).

    Article  Google Scholar 

  6. J. Arias-Stella and J. Valcarcel, Chief cells hyperplasia in the human carotid body at high altutudes. Physiologic and pathologic significance. Hum. Pathol. 7:361 (1976).

    Article  Google Scholar 

  7. F. Lange, Vergrösserung des Glomus caroticum bei allen Formen der Hypertonie, Dtsch. Med. Wschr. 87:13 (1962).

    Article  Google Scholar 

  8. C. Edwards, D. Heath, and P. Harris, The carotid body in emphysema and left ventricular hypertrophy, J. Path., 104:1 (1971).

    Article  Google Scholar 

  9. J.-O. Habeck, A. Honig, C. Pfeiffer, and M. Schmidt, The carotid bodies in spontaneously hypertensive (SHR) and normotensive rats - a study concerning size, location and blood supply, Anat. Anz. 150:374 (1981).

    Google Scholar 

  10. P. Smith, R. Jago, and D. Heath, Glomic cells and blood vessels in the hyperplastic carotid bodies of spontaneously hypertensive rats, Cardiovasc. Res. 18:471 (1984).

    Article  Google Scholar 

  11. J.-O. Habeck and C. Huckstorf, The carotid bodies of spontaneously hypertensive rats after long term antihypertensive treatment with propranolol, Biomed. Biochim Acta, 12:915 (1987).

    Google Scholar 

  12. R. K. Steele and H. Hinterberger, Catecholamines and 5 hydroxytrypt-amine in the carotid body in vascular, respiratory and other diseases, J. Lab. Clin. Med. 80:63 (1972).

    Google Scholar 

  13. C. Eyzaguirre and S. Fidone, Transduction mechanisms in carotid body: glomus cells putative neurotransmitters, and nerve endings. Am. J. Physiol. 239:C135 (1980).

    Google Scholar 

  14. C. Wilson and F. M. Byrom, The vicious circle in chronic Bright’s disease. Experimental evidence from the hypertensive rat. Quart. Med. Rev. 10:65 (1941).

    Google Scholar 

  15. A. J. Dunn and N. R. Hall, Thymic extracts and lymphokine-containing supernatant fluids stimulate the pituary-adrenal axis, but not cerebral catecholamine or indolamine metabolism. Brain Behav. Immunity 1:113 (1987).

    Article  Google Scholar 

  16. J. E. Angell-James, J. A. Clarke, M. deB. Daly, and A. Taton, Carotid body chemoreceptor function and structure in experimental renal hypertensive rabbits, J. Physiol. 326:30P (1982).

    Google Scholar 

  17. J.-O. Habeck, C. Kreher, C. Kuckstorf, and R. Behm, The carotid bodies of renal hypertensive rats, Anta. Anz. 163:49 (1987).

    Google Scholar 

  18. J.-O. Habeck, C. Kuckstorf, and V. Moritz, A comparison of carotid body volumes in normotensive Wistar rats (NWR), Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR), Biomed. Biochim. Acta 46:907 (1987).

    Google Scholar 

  19. D. J. Pallot and G. R. Barer, Some observations on the carotid bodies of the New Zealand strain of genetically hypertensive rats. Acta Physiol. Pol. 36:65 (1985).

    Google Scholar 

  20. H. Alho, M. Partanen, J. Koistinaho, A. Vaalasti, and A. Hervonen, Histochemically demonstrable catecholamines in sympathetic ganglia and carotid body of spontaneously hypertensive and normotensive rats. Histochemistry 80:457 (1984).

    Article  Google Scholar 

  21. S. Hellström, I. Hanbauer, J. Commissiong, F. Kaorum, and S. Koslow, Role and regulation of catecholamines in carotid body, in: “Dynamics of Neurotransmitter Function,” I. Hanin, ed.. Raven Press, New York (1984).

    Google Scholar 

  22. J. M. Pequignot, J. M. Cottet-Emard, Y. Dalmaz, M. De Haut De Sigy, and L. Peyrin, Biochemical evidence for norepinephrine stores outside the sympathetic nerves in rat carotid body. Brain Res. 367: 238 (1986).

    Article  Google Scholar 

  23. I. Hanbauer and S. Hellström, The regulation of dopamine and nor adrenaline in the rat caotid body and its modification by denervation and by hypoxia, J. Physiol. 282:21 (1978).

    Google Scholar 

  24. C. Gonzales and S. Fidone, Increased release of H-dopamine during low O2 stimulation of rabbit carotid body in vitro, Neurosci. Lett. 6:95 (1977).

    Article  Google Scholar 

  25. S. Fidone, C. Gonzales, and K. Yoshizaki, A study of the relationship between dopamine release and chemosensory discharge from the rabbit carotid body in vitro: preliminary findings, “Arterial Chemo- receptors,” C. Belmonte, D. J. Pallot, H. Acker, S. Fidone, eds., Leicester University Press (1981).

    Google Scholar 

  26. Y. Dalmaz, J. M. Pequignot, J. M. Cottet-Emard, E. Tavitian, and L. Peyrin, Sustained enhancement of the catecholamine dynamics in rat carotid bodies, adrenals, sympathetic ganglia and target organs under long term moderate hypoxia, Biomed. Biochim. Acta 46:899 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Przybylski, J., Janicki, P., Trzebski, A. (1990). The Increased Catecholamine Content in the Carotid Bodies of Spontaneously Hypertensive Rats. In: Acker, H., Trzebski, A., O’Regan, R.G. (eds) Chemoreceptors and Chemoreceptor Reflexes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8938-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8938-5_52

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8940-8

  • Online ISBN: 978-1-4684-8938-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics