Advertisement

A Study of the Effects of Airway Carbon Dioxide (PawCO2) on Superior Laryngeal Nerve Afferents Using an Isolated, Artificially Ventilated Closed Laryngeal Preparation in the Anaesthetized Cat

  • A. Bradford
  • C. Bannon
  • P. Nolan
  • R. G. O’Regan

Abstract

Boushey et al. (1974) reported that changing intralaryngeal PCO2 could modify the discharge of single sensory fibres of the superior laryngeal nerve (SLN) in the anaesthetized cat. In their study the larynx was opened in the ventral midline and warmed humidified mixtures of CO2 in air were blown over the exposed laryngeal mucosa. This “open larynx” preparation permitted precise location and categorization of mucosal mechanoreceptors and excluded from study receptors sited deeper in the tissues of the larynx. However, the preparation was not subject to the pressures, airflows, and temperature changes associated with a normal respiratory cycle, stimuli which have been demonstrated to be responsible for the respiratory-related activity of SLN afferent fibres (Sant’Ambrogio et al., 1983, 1985a; Mathew et al., 1984). We decided, therefore, to develop an isolated, artificially ventilated “closed” laryngeal preparation to examine the effects of changing airway CO2 tension (PawCO2) on the responses of SLN sensory fibres to stimuli associated with a normal respiratory cycle.

Keywords

Respiratory Cycle Active Fibre Superior Laryngeal Nerve Tracheal Cannula Pressure Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boushey, H. A., Richardson, P. S., Widdicombe, J. G., and Wise, J. C. M., 1974, The response of laryngeal afferent fibres to mechanical and chemical stimuli, J. Physiol. (Lond.), 240:153.Google Scholar
  2. Brouillette, R. T., and Thach, B. T., 1979, A neuromuscular mechanism maintaining upper airway patency, J. Appl. Physiol., 46:772.Google Scholar
  3. Hwang, J. - C., St. John, W. M., and Bartlett, D., 1984, Afferent pathways for hypoglossal and phrenic responses to changes in upper airway pressure, Respir. Physiol., 55:341.CrossRefGoogle Scholar
  4. Mathew, O. P., Abu-Osba, Y. K., and Thach, B. T., 1982a, Influence of upper airway pressure changes on genioglossus muscle respiratory activity, J. Appl,. Physiol., 52:438.Google Scholar
  5. Mathew, O. P., Abu-Osba, Y. K., and Thach, B. T., 1982b, Genioglossus muscle responses to upper airway pressure changes: afferent pathways, J. Appl. Physiol., 52:445.Google Scholar
  6. Mathew, O. P., Sant’Ambrogior G., Fisher, J. T., and Sant’Ambrogio, F. B., 1984, Respiratory afferent activity in the superior laryngeal nerves, Respir. Physiol., 58:41.CrossRefGoogle Scholar
  7. Mortola, J. P., and Rezzonico, R., 1989, Ventilation in kittens with chronic section of the superior laryngeal nerves, Respir. Physiol., 76:369.CrossRefGoogle Scholar
  8. Sant’Ambrogio, G., Mathew, O. P., Fisher, J. T., and Sant’Ambrogio, F. B., 1983, Laryngeal receptors responding to transmural pressure, airflow and local muscle activity, Respir. Physiol., 54:317.CrossRefGoogle Scholar
  9. Sant’Ambrogio, G., Mathew, O. P., Sant’Ambrogio, F. B., and Fisher, J. T., 1985a, Laryngeal cold receptors, Respir. Physiol., 59:35.CrossRefGoogle Scholar
  10. Sant’Ambrogio, G., Mathew, O. P., Sant’Ambrogio, F. B., 1985b, Role of intrinsic muscles and tracheal motion in modulating laryngeal receptors, Respir. Physiol., 61:289.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Bradford
    • 2
  • C. Bannon
    • 1
  • P. Nolan
    • 1
  • R. G. O’Regan
    • 1
  1. 1.Dept. of Physiology and HistologyUniversity College Earlsfort TerraceDublin 2Ireland
  2. 2.Dept. of PhysiologyRoyal College of Surgeons in IrelandDublin 2Ireland

Personalised recommendations