Involvement of Na+:H+ and Na+:Ca++ Antiporters in the Chemotransduction of Acidic Stimuli

  • A. Rocher
  • A. Obeso
  • B. Herreros
  • C. Gonzalez


It is generally accepted that the primary chemoreceptor elements in the mammalian carotid body are the type-I cells, which respond to low pO2, high pCO2, or low pH by secreting neurotransmitters which activate the sensory nerve endings synaptically connected with them1. One of the putative neurotransmitters synthesized and secreted by type-I cells in greater amounts is dopamine, and its release by isolated carotid bodies in vitro is an appropriate indicator of the activation of chemoreceptor cells by the different stimuli2.


Free Medium Dopamine Release Carotid Body Secretory Response Sodium Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Belmonte and C. Gonzalez, Mechanisms of chemoreception in the carotid body: possible models, in: “Physiology of the Peripheral Arterial Chemoreceptors,” H. Acker and R. G. O’Regan, eds., Elsevier, Amsterdam (1983).Google Scholar
  2. 2.
    C. Gonzalez, A. Obeso, A. Gomez-Nino, B. Dinger, and S. Fidone, Biogenic amine and neuropeptide transmitters in carotid body chemotransmission: experimental findings and perspectives, J. Appl. Physiol, (in press).Google Scholar
  3. 3.
    A. Obeso, Hipotesis metabólica de quimiotransducción: hechos experimentales, Ph.D. Thesis, Valladolid, Spain (1984).Google Scholar
  4. 4.
    A. Obeso, S. Fidone, and C. Gonzalez, Pathways for calcium entry into type I cells: significance for the secretory response, in: “Chemoreceptors in Respiratory Control,” J. A. Ribeiro and D. Fallot, eds., Croom Helm, London (1987).Google Scholar
  5. 5.
    J. López-Barneo, J. López-López, J. Urena, and C. Gonzalez, Chemotransduction in the carotid body: K current modulated by pO2 in type I chemoreceptor cells. Science 241:580 (1988).CrossRefGoogle Scholar
  6. 6.
    J. López-López, C. Gonzalez, J. Urena, and J. López-Barneo, Low PO2 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol. 93:1001 (1989).CrossRefGoogle Scholar
  7. 7.
    L. J. Nullins, An electrogenic saga: consequences of sodium-calcium exchange in cardiac muscle, “Electrogenic Transport, Fundamental Principles and Physiological Implications,” M. P. Blaustein and M. Lieberman, eds.. Raven Press, New York (1984).Google Scholar
  8. 8.
    E. Carafoli, Intracellular calcium homeostasis, Ann. Rev. Biochem. 56:395 (1987).CrossRefGoogle Scholar
  9. 9.
    M. A. Hanson, P. C. G. Nye, and R. W. Torrance, The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one, in: “Arterial Chemoreceptors,” C. Belmonte, D. J. Pallot, H. Acker, and S. Fidone, eds., Leicester University Press (1981).Google Scholar
  10. 10.
    R. Rigual, C. Iniguez, C. Carreres, and C. Gonzalez, Localization of carbonic anhydrase in the cat carotid body. Histochemistry 82:577 (1985).CrossRefGoogle Scholar
  11. 11.
    S. Grinstein and A. Rothstein, Mechanisms of regulation of the Na+/H+ exchanger, J. Memb. Biol. 90:1 (1986).CrossRefGoogle Scholar
  12. 12.
    S. Fidone and C. Gonzalez, Catecholamine in rabbit carotid body in vitro, J. Physiol. 333:69 (1982).Google Scholar
  13. 13.
    L. Almaraz, C. Gonzalez, and A. Obeso, Effects of high potassium on the release of %-dopamine from the cat carotid body in vitro, J. Physiol. 379:293 (1986).Google Scholar
  14. 14.
    E. Gonzalez, R. Rigual, S. Fidone, and C. Gonzalez, Mechanisms for termination of the action of dopamine in carotid body chemoreceptors, J. Auton. Nerv. Syst., 18:249 (1987).CrossRefGoogle Scholar
  15. 15.
    A. Obeso, L. Almaraz, and C. Gonzalez, Effects of cyanide and uncoup- lers on chemoreceptor activity and ATP content of the cat carotid body. Brain Res. 481:250 (1989).CrossRefGoogle Scholar
  16. 16.
    S. Grinstein and S. Cohen, Cytoplasmic (Ca2+) and intracellular pH in lymphocytes. Role of membrane potential and volume-activated Na+/ H+ exchange, J. Gen. Physiol. 89:185 (1987).CrossRefGoogle Scholar
  17. 17.
    Y. Hayashida and C. Eyzaguirre, Voltage noise of carotid body type I cells. Brain Res. 167:189 (1979).CrossRefGoogle Scholar
  18. 18.
    W. F. Boron, Intracellular pH regulation, “Physiology of Membrane Disorders,” T. E. Andreoli, J. F. Hoffman, D. D. Fanestil, and S. G. Schultz, eds.. Plenum Press, New York (1986).Google Scholar
  19. 19.
    R. Krapt, R. J. Alpern, F. C. Rector, and C. A. Berry, Basolateral membrane Na/base cotransport is dependent on CO2/HCO3 in the proximal convoluted tubule, J. Gen. Physiol. 90:833 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • A. Rocher
    • 1
  • A. Obeso
    • 1
  • B. Herreros
    • 1
  • C. Gonzalez
    • 1
  1. 1.Departamento de Bioquimica y Biologia Molecular y Fisiologia Facultad de MedicinaUniversidad de ValladolidValladolidSpain

Personalised recommendations