“Gating” of Peripheral Chemoreceptor Input to Medullary Inspiratory Neurons: Role of Bötzinger Complex Neurons

  • J. Lipski
  • M. D. Voss


It has long been known that reflex responses of respiratory motoneurons to short-lasting activation of peripheral chemoreceptors depend critically on the phase of the respiratory cycle in which such stimuli are applied. Stimuli applied during inspiration evoke a short-latency excitation of inspiratory activity (Black and Torrance, 1967; Band et al., 1970; Eldridge, 1972). Stimuli applied during expiration normally do not trigger an immediate inspiratory response, but typically result in prolongation of the expiratory phase (e.g.. Black and Torrance, 1967; Eldridge, 1972). Despite substantial progress in understanding the organization of the central respiratory network (for review see e.g., Feldman, 1986; Long and Duffin, 1986), the neuronal mechanism of this phenomenon, often referred to as “gating”, has not yet been fully elucidated.


Phrenic Nerve Respiratory Neuron Carotid Sinus Nerve Inspiratory Motor Inspiratory Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arita, H., Kogo, N., and Koshiya, N., 1987, Morphological and physiological properties of caudal medullary expiratory neurons of the cat. Brain Res., 401:285.CrossRefGoogle Scholar
  2. Band, D. M., Cameron, I. R., and Semple, S. J. G., 1970, The effect on respiration of abrupt changes in carotid artery pH and PCO2 in the cat, J. Physiol., 211:479.Google Scholar
  3. Black, A. M. S., and Torrance, R. W., 1967, Chemoreceptors effects in the respiratory cycle, J. Physiol., 189:59P.Google Scholar
  4. Bystrzycka, E. K., 1980, Afferent projections to the dorsal and ventral respiratory nuclei in the medulla oblongata of the cat studied by the horseradish peroxidase technique. Brain Res., 185:59.CrossRefGoogle Scholar
  5. Davies, R. O., and Edwards, M. W., 1975, Medullary relay neurons in the carotid body chemoreceptor pahtways of cats, Resp. Physiol., 24:69.CrossRefGoogle Scholar
  6. Donoghue, S., Felder, R. B., and Spyer, K. M., 1984, The central projections of carotid baroreceptors and chemoreceptors in the cat: a neuro- physiological study, J. Physiol., 347:397.Google Scholar
  7. Donoghue, S., Felder, R. B., Gilbey, M. P., Jordan, D., and Spyer, K. M., 1985, Postsynaptic activity evoked in the nucleus tractus solitarius by carotid sinus and aortic nerve afferents in the cat, J. Physiol., 360:261.Google Scholar
  8. Eldridge, F. L., 1972, The importance of timing on the respiratory effects of intermittent carotid body chemoreceptor stimulation, J. Physiol., 222:319.Google Scholar
  9. Ezure, K., and Manabe, M., 1988, Decrementing expiratory neurons of the Bötzinger complex. II. Direct inhibitory linkage with ventral respiratory group neurons, Exp. Brain Res., 72:159.CrossRefGoogle Scholar
  10. Fedorko, L., Duffin, J., and England, S., 1989, Inhibition of inspiratory neurons of the nucleus retroambigualis by expiratory neurons of the Bötzinger Complex in the cat, Exp. Neurol., in press.Google Scholar
  11. Fedorke, L., and Merrill, E. G., 1984, Axonal projections from the rostral expiratory neurons of the Bötzinger Complex to medulla and spinal cord in the cat, J. Physiol., 350:487.Google Scholar
  12. Feldman, J. L., 1986, Neurophysiology of breathing in mammals, in; “Handbook of Physiology, – The Nervous System, Sect. 1, Vol. IV”, Am. Physiological Society, Bethesda.Google Scholar
  13. Izzo, P. N., Lin, R. J., Richter, D. W., and Spyer, K. M., 1988, Physiological and morphological identification of neurons receiving arterial chemoreceptive afferent input in the nucleus tractus solitarius of the cat, J. Physiol., 399:31P.Google Scholar
  14. Jiang, C., and Lipski, J., 1989, Monosynaptic inhibition of respiratory neurons in the ventral respiratory group (VRG) from augmenting expiratory neurons of the ipsilateral Bötzinger Complex, Proc. Intern. Union Physiol. Sci., XVII:422.Google Scholar
  15. Kalia, M. P., 1981, Anatomical organization of central respiratory neurons, Ann. Rev. Physiol., 43:105.CrossRefGoogle Scholar
  16. Kalia, M. P., Feldman, J. L., and Cohen, M. I., 1979, Afferent projections to inspiratory neuronal region of the ventrolateral nucleus of the tractus solitarius in the cat. Brain Res., 171:135.CrossRefGoogle Scholar
  17. Kirkwood, P. A., Nisimaru, N., and Sears, T. A., 1979, Monosynaptic excitation of bulbospinal respiratory neurons by chemoreceptor afferents in the carotid sinus nerve, J. Physiol., 293:35P.Google Scholar
  18. Kubin, L., and Lipski, J., 1980, Properties of the rostral NRA expiratory neurons projecting to the contralateral NTS group, Neurosci. Lett., 5:S141.Google Scholar
  19. Lawson, E. E., Richter, D. W., Ballantyne, D., and Lalley, P. M., 1989, Peripheral chemoreceptor inputs to medullary inspiratory and post-inspiratory neurons of cats. Pflügers Arch., in press.Google Scholar
  20. Lipski, J., McAllen, R. M., and Trzebski, A., 1976, Carotid baroreceptor and chemoreceptor inputs onto single medullary neurons. Brain Res., 107:132.CrossRefGoogle Scholar
  21. Lipski, J., McAllen, R. M., and Spyer, K. M., 1977a, The carotid chemoreceptor input to the respiratory neurons of the nucleus of tractus solitarius, J. Physiol., 269:797.Google Scholar
  22. Lipski, J., McAllen, R. M., and Trzebski, A., 1977b, Carotid body chemoreceptor afferent neurons in the solitary tract nucleus area of the cat, in: “Chemoreception in the Carotid Body,” H. Acker, S. Fidone, D. Pallot, C. Eyzaguirre, D. W. Lübbers, R. W. Torrance, eds., Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  23. Lipski, J., and Merrill, E. G., 1980, Electrophysiological demonstration of the projection from repiratory neurons in rostral medulla to contralateral dorsal respiratory group. Brain Res., 197:521.CrossRefGoogle Scholar
  24. Lipski, J., Trzebski, A., Chodobska, J., and Kruk, P., 1984, Effects of carotid chemoreceptor excitation on medullary expiratory neurons in cats, Resp. Physiol., 57:279.CrossRefGoogle Scholar
  25. Livingston, C. A., and Berger, A. J., 1988, Immunocytochemical localization of GABA in neurons projecting to the DRG, Soc. Neurosci. Abstr., 14:335.Google Scholar
  26. Long, S., and Duffin, J., 1986, The neuronal determinanats of respiratory rhythm. Progress Neurobiol., 24:101.CrossRefGoogle Scholar
  27. Merrill, E. G., 1970, The lateral respiratory neurons of the medulla: their association with nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res., 24:11.CrossRefGoogle Scholar
  28. Merrill, E. G., 1979, Is there reciprocal inhibition between medullary inspiratory and expiratory neurons? in: “Central Nervous Control Mechanisms in Breathing,” C. von Euler and H. Lagercrantz, eds., Pergamon Press, New York.Google Scholar
  29. Merrill, E. G, 1981, Where are the real respiratory neurons? Fed. Proc., 40:2389.Google Scholar
  30. Merrill, E. G., Lipski, J., Kubin, L., Fedorko, L., 1983, Origin of the expiratory inhibition of nucleus tractus solitarius inspiratory neurons. Brain Res., 263:43.CrossRefGoogle Scholar
  31. Otake, K., Sasaki, H., Ezure, K., and Manabe, M., 1988, Axonal projections from Bötzinger expiratory neurons to contralateral ventral and dorsal respiratory group in the cat, Exp. Brain Res., 72:167.CrossRefGoogle Scholar
  32. Smith, J. C., Morrison, D. E., Ellenberg, H. H., Otto, M. R., and Feldman, J. L., 1989, Brainstem projections to the major respiratory neuron populations in the medulla of the cat, J. Comp. Neurol., 281:69.CrossRefGoogle Scholar
  33. Voss, M. D., de Castro, D., Lipski, J., Pilowsky, P. M., and Jiang, C., 1989, Serotonin immunoreactive boutons form close contacts with respiratory neurons of the dorsal respiratory group in the cat, J. Comp. Neurol., in press.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. Lipski
    • 1
  • M. D. Voss
    • 1
  1. 1.Department of Physiology, School of MedicineThe University of AucklandNew Zealand

Personalised recommendations