Advertisement

The Dopamine Turnover in Rat Carotid Body under Chronic Almitrine Treatment: Effects of Sinus Nerve Transection and Sympathectomy

  • J. M. Pequignot
  • Y. Dalmaz
  • Y. Evrard
  • L. Peyrin

Abstract

It has long been recognized that electrical or physiological stimulation of the carotid sinus nerve (CSN) or of the sympathetic nerve fibers supplying the carotid body are able to modify the chemosensory activity (for review see O’Regan and Majcherczyk, 1983). Stimulating the CSN can induce an efferent inhibition of the chemosensory activity of the carotid body. On the other hand, the excitation of the sympathetic fibers which run along the ganglio-glomerular nerve from the superior cervical ganglion to the carotid body may produce excitatory as well as inhibitory effects on the carotid chemoreceptor activity. One hypothesis proposed to explain these efferent influences presumes that the nerve fibers exert a direct effect on the release of neurotransmitters modulating the chemosensory discharges (Mc Donald and Mitchell, 1975; Sampson et al., 1975). Catecholamines, especially dopamine (DA), have been evoked as possible candidates because DA is a potent neuromodulator of the peripheral chemosensitivity and is released during hypoxia (Hanbauer and Hellström, 1978; Llados and Zapata, 1978).

Keywords

Malic Acid Carotid Body Superior Cervical Ganglion Sympathetic Fiber Glomus Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biscoe, T. J., and Purves, M. J., 1967, Factors affecting the cat carotid chemoreceptor and cervical sympathetic activity with special reference to passive hind-limb movements, J. Physiol. (Lond.), 190:425.Google Scholar
  2. Campbell, D. B., Evrard, Y., Gordon, B. H., and Mc Queen, D. S., 1988, Influence of ganglioglomerular (sympathetic) nerves on responses of carotid chemoreceptors to almitrine in anaesthetized cats, J. Physiol. (Lond.), 406:189 P.Google Scholar
  3. Eyzaguirre, C., and Lewin, J., 1961, The effect of sympathetic stimulation on carotid nerve actiity, J. Physiol. (Lond.), 159:251.Google Scholar
  4. Hanbauer, I., and Hellström, S., 1978, The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia, J. Physiol. (Lond.), 282:21.Google Scholar
  5. Llados, F., and Zapata, P., 1978, Effects of dopamine analogues and antagonists on carotid body chemosensors in situ, J. Physiol. (Lond.), 274:487.Google Scholar
  6. Laubie, M., and Schmitt, H., 1980, Long lasting hyperventilation induced by almitrine: Evidence for a specific effect on carotid and thoracic chemoreceptors, Eur. J. Pharmacol., 61:125.CrossRefGoogle Scholar
  7. McDonald, D. M., and Mitchell, R. A., 1975, The innervation of glomus cells, ganglion cells and blood vessels in the rat carotid body: a, quantitative ultrastructural analysis, J. Neurocytol,, 4:177.CrossRefGoogle Scholar
  8. O’Regan, R. G., 1981, Responses of carotid body chemosensory activity and blood flow to stimulation of sympathetic nerves in the cat, J. Physiol. (Lond.), 315:81.Google Scholar
  9. O’Regan, R. G., and Majcherczyk, S., 1983, Control of peripheral chemo- receptors by efferent nerves, in: “Physiology of the Peripheral Arterial Chemoreceptors,” H. Acker and R. G. O’Regan, eds., Elsevier, Amsterdam.Google Scholar
  10. O’Regan, R. G., Majcherczyk, S., and Przybyszewski, A., 1983, Effects of almitrine bismesylate on activities recorded from nerves supplying the carotid bifurcation in the cat, Eur. J. Resp. Pis., 64:197.Google Scholar
  11. Pequignot, J. M., Cottet-Emard, J. M., Dalmaz, Y., and Peyrin, L., 1987a, Dopamine and norepinephrine dynamics in rat carotid bodies during long-term hypoxia, J. Auton. Nerv. Syst., 21:9.CrossRefGoogle Scholar
  12. Pequignot, J. M., Hellström, S., Forsgren, S., Cottet-Emard, J. M., and Peyrin, L., 1988, Proc. IXth International Symposium on Arterial Chemoreceptors, Salt Lake City.Google Scholar
  13. Pequignot, J. M., Tavitian, E., Boudet, C., Evrard, Y., Claustre, J., and Peyrin, L., 1987b, Inhibitory effect of almitrine on dopaminergic activity of rat carotid body, J. Appl. Physiol., 63:746.Google Scholar
  14. Sampson, S. R., Nicolaysen, G., and Jaffe, R. A., 1975, Influence of centrifugal sinus nerve activity on carotid body catecholamines: microphotometric analysis of formaldehyde-induced fluorescence. Brain Res., 85:437.CrossRefGoogle Scholar
  15. Vasquez-Nin, G. H., Costero, I., Echeverria, O. M., Aguilar, R., and Barroso-Moguel, R., 1978, Innervation of the carotid body. An experimental quantitative study. Acta Physiol., 102:12.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. Pequignot
    • 1
    • 2
  • Y. Dalmaz
    • 1
    • 2
  • Y. Evrard
    • 1
    • 2
  • L. Peyrin
    • 1
    • 2
  1. 1.Physiologie, Faculté Médecine Grange-BlanchUA CNRS 1196Lyon Cédex 08France
  2. 2.Institut de Recherches Internationales ServierNeuilly/Seine CédexFrance

Personalised recommendations