Advertisement

Transient Ventilatory Responses to Carbon Dioxide Inhalation and to Exercise in Man

  • P.-E. Paulev
  • M. J. Mussell
  • Y. Miyamoto
  • Y. Nakazono
  • M. Pokorski
  • T. Sugawara

Abstract

The ventilatory response to dynamic exercise is divided into three phases. Initially, there is a fast rise in expiratory ventilation (\(\mathop \text{V}\limits^\text{.}\))at the onset of exercise. This phase I occurs within the first breath (Asmussen, 1983) and is mainly due to a rise in frequency (Cunningham et al., 1986). Then follows an exponential increase in ventilation, with a time constant (Tc) of 1 min, to steady state. Cardiac output (\(\mathop \text{Q}\limits^\text{.}\)) changes similarly, due to a rapid increase in heart rate, followed by an exponential rise. During the latter two phases, metabolic CO2diffuses from the venous blood into the alveoli at a rate or flux, whicfh is dependent on the venous CO2concentration (Cv) and the blood flow rate (\(\mathop \text{Q}\limits^\text{.}\)), but independent\(\mathop \text{V}\limits^\text{.}\)

Keywords

Carotid Body Ventilatory Response Dynamic Exercise Neural Drive Carbon Dioxide Inhalation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asmussen, E., 1983, Control of ventilation in exercise, Exerc. Sport Sei. Rev., 11:24.Google Scholar
  2. Cunningham, D. J. C., Robbins, P. A., and Wolf, C. B., 1986, Integration of respiratory responses to changes in alveolar partial pressures of CO2and O2and in arterial pH, Jji: “Handbook of Physiology, Section 3: The Respiratory System. Vol. II. Control of Breathing,” N. S. Cherniack, and J. G. Widdicombe, eds.. Am. Physiological Society, Bethesda.Google Scholar
  3. Dejours, P., 1959, La regulation de la ventilation au course de I’exercise musculaire chez I’homme, J. Physiol. Paris, 51:163.Google Scholar
  4. Mattell, G., 1973, Time courses of changes in ventilation and arterial gas tension in man induced by moderate exercise.Acta Physiol. Scand., 206:1.Google Scholar
  5. Paulev, P.-E., 1971, Respiratory and cardiac responses to exercise in man.J. Appl. Physiol., 34:165.Google Scholar
  6. Paulev, P.-E., and Stibolt Jensen, E., 1973, Cardiac rate and ventilatory volume rate reactions to a muscle contraction, J. Appl. Physiol., 34:578.Google Scholar
  7. Poon, Chi-Sang, 1987, Ventilatory control in hypercapnia and exercise: optimization hypothesis, J. Appl. Physiol., 62:2447.Google Scholar
  8. Saunders, K. B., 1980, Oscillations of arterial CO2 tension in a respiratory model: Some implications for the control of breathing in exercise, J. Theo. Biol., 84:163.CrossRefGoogle Scholar
  9. Swanson, G. D., and Sherrill, D. L., 1983, A model evaluation of estimates of breath-to-breath alveolar gas exchange, J. Appl. Physiol., 55:1936.Google Scholar
  10. Wasserman, K., Whipp, B. J., and Casaburi, R., 1986, Respiratory control during exercise, in: “Handbook of Physiology, Section 3: The Respiratory System. Vol. II. Control of Breathing,” N. S. Cherniack and J. G. Widdicombe, eds.. Am. Physiological Society, Bethesda.Google Scholar
  11. Yamamoto, W. S., 1960, Mathematical analysis of the time course of alveolar CO2, J. Appl. Physiol., 15:215.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • P.-E. Paulev
    • 2
  • M. J. Mussell
    • 1
  • Y. Miyamoto
    • 1
  • Y. Nakazono
    • 1
  • M. Pokorski
    • 3
  • T. Sugawara
    • 1
  1. 1.Dept. of Information Engineering, Faculty of EngineeringYamagata UniversityYonezawa, 992Japan
  2. 2.Medical Physiology Sports/CyberneticsUniversity of CopenhagenDenmark
  3. 3.Dept. of NeurophysiologyPolish Academy of SciencesWarsawPoland

Personalised recommendations