Selective Effect of Reduced Extracellular pH on Potassium Channels in Type-I Cells from the Neonatal Rat Carotid Body

  • C. Peers


A decrease in pH of arterial blood excites the carotid body even when the partial pressures of O2 and CO2 (the other natural stimuli of the carotid body) are maintained at a constant level1. The precise location within the carotid body where acidity, or any other chemoexcitatory agent acts remains unclear, although much evidence supports the view that the type-I glomus cells are the chemosensory elements of the carotid body2. These cells contain catecholamine-filled dense core vesicles and recent studies have shown them to possess various ion channels in their plasma membranes3,4,4,6. As ion channels have been shown to play key roles in other sensory cell types, an understanding of those present in type-I cells and their possible modulation by chemoexcitatory agents may prove to be essential to our understanding of the chemotransductive process.


Patch Clamp Carotid Body Test Potential Bath Application Carotid Sinus Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. J. Biscoe, M. J. Purves, and S. R. Sampson, The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation, J. Physiol, 208:121 (1970).Google Scholar
  2. 2.
    S. J. Fidone and C. Gonzalez, Initiation and control of chemoreceptor activity in the carotid body, in; “Handbook of Physiology III: The Respiratory System, Vol. 2, Part 1,” A. P Fishman, N. S. Cherniack, J. G. Widdicome, S. R. Geiger, eds. Am. Phys. Soc., Bethesda (1986).Google Scholar
  3. 3.
    M. R. Duchen, K. W. T. Caddy, G. C. Kirby, D. L. Patterson, J. Ponte, and T. J. Biscoe, Biophysical studies of the cellular elements of the rabbit carotid body, Neuroscience 26:291 (1988).CrossRefGoogle Scholar
  4. 4.
    J. Hescheler, M. A. Delpiano, H. Acker, and F. Pietruschka, Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res. 486:79 (1989).CrossRefGoogle Scholar
  5. 5.
    J. Urena, J. Lopez-Lopez, C. Gonzalez, and J. Lopez-Barneo, Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol. 93:979 (1989).CrossRefGoogle Scholar
  6. 6.
    C. Peers and J. O’Donnell, Potassium currents in type I cells isolated from the neonatal rat carotid body and their responses to chemoexcitatory agents, “IXth I.S.A.C. Symposium on Arterial Chemo receptors,” C. Eyzaguirre, S. Fidone, S. Lahiri, R. Fitzgerald, eds. (in press).Google Scholar
  7. 7.
    O. P. Kamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch clamp techniques for highresolution current recording from cells and cell-free membrane patches. Pflügers Arch. 391:85 (1981).CrossRefGoogle Scholar
  8. 8.
    R. W. Meech and N. B. Standen, Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx, J. Physiol. 249:211 (1978).Google Scholar
  9. 9.
    A. K. Ritchie, Two distinct calcium-activated potassium currents in a rat anterior pituitary cell line, J. Physiol. 385:591 (1987).Google Scholar
  10. 10.
    B. Hille, “Ionic Channels in Excitable Membranes,” Sinauer Associates Inc., Sunderland, Massachusetts (1984).Google Scholar
  11. 11.
    R. J. Miller, Multiple calcium channels and neuronal function. Science 235:46 (1987).CrossRefGoogle Scholar
  12. 12.
    J. Lopez-Lopez, C. Gonzalez, J. Urena, and J. Lopez-Barneo, Low p02 selectively inhibits K channel activity in chemoreceptor cells of the mammalian carotid body, J. Gen. Physiol. 93:1001 (1989).CrossRefGoogle Scholar
  13. 13.
    R. Latorre, A. Oberhauser, P. Labarca, and O. Alvarez, Varieties of calcium-activated potassium channels, Ann. Rev. Physiol. 51:385 (1989).CrossRefGoogle Scholar
  14. 14.
    A. P. Fox, M. C. Nowycky, and R. W. Tsien, Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones, J. Physiol. 394:149 (1987).Google Scholar
  15. 15.
    R. C. Thomas, Intracellular pH, in: “Acid-base Balance,” R. Hainsworth, ed., Manchester University Press (1984).Google Scholar
  16. 16.
    D. L. Cook, M. Ikeuchi, and W. Y. Fujimoto, Lowering of pHi inhibits Ca2+-activated K+ channels in pancreatic B-cells, Nature 311: 269 (1984).CrossRefGoogle Scholar
  17. 17.
    T. Iijima, S. Ciani, and S. Hagiwara, Effects of the external pH on Ca2+ channels: experimental studies and theoretical considerations using a two-site, two ion model, Proc. Natl. Acad. Sci USA 83:654 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • C. Peers
    • 1
  1. 1.University Laboratory of PhysiologyOxfordUK

Personalised recommendations