The Cardiovascular Response to Systemic Hypoxia in the CAT: The Role of the Renin-Angiotensin System

  • J. M. Marshall
  • J. D. Metcalfe


It is known that systemic hypoxia has marked effects on the cardiovascular system. These are generally attributed to the interaction between reflex, nerve-mediated responses, and the local influences of changes in blood gas tensions. They include the reflex effects of hypoxic stimulation of peripheral chemoreceptors, effects mediated by the actions of hypoxia upon the central nervous system, the local actions of hypoxia upon the heart and vasculature, as well as the reflex and direct effects of any evoked changes in ventilation and in PaCO2 1.


Renal Blood Flow Acute Mountain Sickness Vascular Conductance Peripheral Chemoreceptor Systemic Hypoxia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. de Burgh Daly, Interactions between respiration and circulation, in: “Handbook of Physiologe, The Respiratory System, Vol. II,” N. S. Cherniack and J. G. Widdicombe, eds., Am. Physiological Society, Washington D.C. (1986).Google Scholar
  2. 2.
    J. B. Uther, S. W. Hunyar, J. Shaw, and P. I. Korner, Bulbar and suprabulbar control of the cardiovascular autonomic effects during arterial hypoxia in the rabbit, Circ. Res. 16:491 (1970).Google Scholar
  3. 3.
    P. I. Korner, Operation of the central nervous system in reflex circulatory control. Fed. Proc. 39:2504 (1980).Google Scholar
  4. 4.
    R. C. Koehler, B. W. McDonald, and J. A. Krasney, Influence of CO2 on cardiovascular response to systemic hypoxia in conscious dogs. Am. J. Physiol. 239:H545 (1980).Google Scholar
  5. 5.
    J. M. Marshall and J. D. Metcalfe, Analysis of the cardiovascular changes induced in the rat by graded levels of systemic hypoxia, J. Physiol. 407:385 (1988).Google Scholar
  6. 6.
    J. M. Marshall and J. D. Metcalfe, Influences on the cardiovascular response to graded levels of systemic hypoxia of the accompanying hypocapnia in the rat, J. Physiol. 410:381 (1989).Google Scholar
  7. 7.
    C. E. Rose, R. J. Anderson, and R. M. Carey, Antidiuresis and vaso pressin release with hypoxemia and hypercapnia in conscious dogs. Am. J. Physiol. 247:R127 (1984).Google Scholar
  8. 8.
    C. E. Rose, D. P. Kimmel, R. L. Godine, D. L. Kaiser, and R. M. Carey, Synergistic effects of acute hypoxemia and hypercapnic acidosis in conscious dogs. Renal dysfunction and activation of the renin- angiotensin system, Circ. Res. 53:202 (1983).Google Scholar
  9. 9.
    A. Honig, Salt and water metabolism in acute high-altitude hypoxia: role of peripheral arterial chemoreceptors, NIPS 4:109 (1989).Google Scholar
  10. 10.
    J. S. Milledge and D. M. Catley, Angiotensin converting enzyme response to hypoxia in man: its role in altitude acclimatization, Clin. Sci. 67:453 (1984).Google Scholar
  11. 11.
    G. M. Aber, T. J. Bayley, and J. M. Bishop, Inter-relationships between renal and cardiac function and respiratory gas exchange in obstructive airways disease, Clin. Sci. 25:159 (1963).Google Scholar
  12. 12.
    M. O. Färber, S. S. Kiblawi, R. A. Strawbridge, G. L. Robertson, M. H. Weinberger, and F. Manfredi, Studies on plasma vasopressin and the renin-angiotensin-aldosterone system in chronic obstructive lung disease, J. Lab. Clin. Med. 90:373 (1977).Google Scholar
  13. 13.
    J. M. Marshall and J. D. Metcalfe, Analysis of factors that contribute to cardiovascular changes induced in the cat by graded levels of systemic hypoxia, J. Physiol. 412:429 (1989).Google Scholar
  14. 14.
    S. M. Hilton and J. M. Marshall, The pattern of cardiovascular response to carotid chemoreceptor stimulation in the cat, J. Physiol. 326:495 (1982).Google Scholar
  15. 15.
    L. B. Rowell and J. R. Blackmon, Lack of sympathetic vasoconstriction in hypoxemic humans at rest. Am. J. Physiol. 251:H562 (1986).Google Scholar
  16. 16.
    M. de Burgh Daly, A. S. Litherland, and L. M. Wood, The reflex effects of inflation of the lungs on heart rate and hind limb vascular resistance in the cat, ICRS Med. Sci. 11:861 (1983).Google Scholar
  17. 17.
    J. E. Black and I. C. Roddie, The mechanism of the changes in forearm vascular resistance during hypoxia, J. Physiol. 143:226 (1958).Google Scholar
  18. 18.
    D. W. Richardson, A. J. Wasserman, and J. L. Patterson, General and regional circulatory responses to change in blood pH and carbon dioxide tension, J. Clin. Invest. 40:31 (1961).CrossRefGoogle Scholar
  19. 19.
    M. J. Brody and A. K. Johnson, Role of the antero ventral third ventricle region in fluid and electrolyte balance, arterial pressure regulation and hypertension. Front. Neuroendocrin. 6:249 (1980).Google Scholar
  20. 20.
    S. M. Hilton and W. S. Redfern, A search for brain stem cell groups integrating the defence reaction in the rat, J. Physiol. 378:213 (1986).Google Scholar
  21. 21.
    R. P. Forsyth, Sympathetic nervous system control of distribution of cardiac output in unanaesthetised monkeys. Fed. Proc. 31:1240 (1972).Google Scholar
  22. 22.
    S. A. Stalcup, D. Davidson, and R. B. Mellins, Endothelial cell functions in the haemodynamic response to stress, Ann. N.Y. Acad. Sci. 401:117 (1982).CrossRefGoogle Scholar
  23. 23.
    E. J. Johns, Role of angiotensin II and the sympathetic nervous system in the control of renal function, J. Hypertension 7:695 (1989).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • J. M. Marshall
    • 1
  • J. D. Metcalfe
    • 1
  1. 1.Department of PhysiologyThe Medical SchoolBirminghamUK

Personalised recommendations