Advertisement

Phosphorescence and Fluorescence Imaging: New Tools for the Study of Carotid Body Function

  • W. L. Rumsey
  • R. Iturriaga
  • D. F. Wilson
  • S. Lahiri
  • D. Spergel

Abstract

Perfusion of individual organs of the body in the isolated state is a powerful tool for the study of their integrated function. This approach has provided, for example, a wealth of knowledge on the relationship between metabolism and function in several tissues, including heart, liver, kidney, and skeletal muscle. The carotid body, however, has proven unreliable as an in vitro perfused model.

Keywords

Carotid Body Mitochondrial Oxidative Phosphorylation Glomus Cell Oxygen Dependence Phosphorescence Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker, H., 1989, PO2 chemoreception in arterial chemoreceptors, Ann. Rev. Physiol., 51:835.CrossRefGoogle Scholar
  2. Eyzaguirre, C., and Koyano, H., 1965, Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro, J. Physiol. (Lond.), 178:385.Google Scholar
  3. Fidone, S. J., and Gonzalez, C., 1986, Initiation and control of chemoreceptor activity in the carotid body, in: “Handbook of Physiology. The Respiratory System. Control of Breathing,” A. P. Fishman, ed.. Am. Physiological Society, Bethesda.Google Scholar
  4. Grinstein, S., Cojen, S., and Rothstein, A., 1984, Cytoplasmic pH regulation in thymic lymphocytes by an Amiloride-sensitive Na+/H+ antiport, J. Gen. Physiol., 83:341.CrossRefGoogle Scholar
  5. Hanson, M. A., Nye, P. C. G., and Torrance, R. W., 1981, The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one, in: “Arterial Chemoreceptors,” Belmonte, C., Pallet, D. J., Acker, H., and Fidone, S., eds., Leicester University Press.Google Scholar
  6. Lahiri, S., 1981, Chemical modification of carotid body chemoreception by sulfhydryls. Science, 212:1065.CrossRefGoogle Scholar
  7. Lahiri, S., and DeLaney, R. G., 1975, Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers, Respir. Physiol., 24:249.CrossRefGoogle Scholar
  8. Mills, E., and Jöbsis, F., 1972, Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension, J. Neuro. Physiol., 5:405.Google Scholar
  9. Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T., and de Laat, S. W., 1983, Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature, 304:645.CrossRefGoogle Scholar
  10. Mulligan, E., Lahiri, S., and Storey, B. T., 1981, Carotid body O2 chemoreception and mitochondrial oxidative phosphorylation, J. Appl. Physiol., 51:438.Google Scholar
  11. Nuutinen, E. M., Nishiki, K., Erecinska, M., and Wilson, D. F., 1982, Role of mitochondrial oxidative phosphorylation in regulation of coronary blood flow. Am. J. Physiol., 243:H169.Google Scholar
  12. Paradiso, A. M., Tsien, R. Y., and Machen, T. E., 1984, Na+/H+ exchange in gastric glands as measured with a cytoplasmic-trapped, fluorescent pH indicator, Proc. Natl. Acad. Sci., 81:7436.CrossRefGoogle Scholar
  13. Rumsey, W. L., Vanderkooi, J. M., and Wilson, D. F., 1988, Imaging of phosphorescence: A novel method for measuring oxygen distribution in perfused tissue. Science, 241:1649.CrossRefGoogle Scholar
  14. Shirahata, M., Andronikou, S., and Lahiri, S., 1987, Differential effects of oligomycin on carotid chemoreceptor responses to O2 and CO2 in the cat, J. Appl. Physiol., 63:2084.Google Scholar
  15. Torrance, R. W., 1977, Manipulation of bicarbonate in the carotid body, in: “Chemoreception in the Carotid Body,” Acker, H., Fidone, S., Pallot, D., Eyzaguirre, C., Lübbers, D. W., and Torrance, R. W., eds., Springer-Verlag, New York.Google Scholar
  16. Vanderkooi, J., and Wilson, D. F., 1986, A new method for measuring oxygen in biological systems. Adv. Exp. Med. Biol., 200:189.CrossRefGoogle Scholar
  17. Wilson, D. F., Rumsey, W. L., Green, T. J., and Vanderkooi, J. M., 1988, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, J. Biol. Chem., 263:2712.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • W. L. Rumsey
    • 1
  • R. Iturriaga
    • 2
  • D. F. Wilson
    • 1
  • S. Lahiri
    • 2
  • D. Spergel
    • 2
  1. 1.Department of Biochemistry and BiophysicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of PhysiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations