Transmitter Dynamics in the Carotid Body

  • S. Fidone
  • C. Gonzales
  • B. Dinger
  • L. Stensaas


The classical studies of De Castro7 and Heymans et al.24 described the salient structural and sensory properties of the arterial chemosensory tissue of the mammalian carotid body. The elegant work of these early scholars set the state for contemporary research on chemoreception by focusing attention on type-I (glomus) cells in the carotid body. They suggested that these unusual cells act as preneural transducer elements which excite closely apposed afferent nerve terminals by releasing transmitter agents in response to natural stimuli. This fundamental tenet of carotid body physiology has endured numerous challenges for more than half a century, and today, following the discoveries of multiple neurotransmitter agents in type-I cells, it has emerged as a central theme in much of the current research activity on chemoreception. Indeed, the decade of the 1980’s ushered in a new and exciting era in carotid body research. The focus shifted from earlier controversies over the relative importance of type-I cells vs. sensory nerve endings, and whether acetylcholine or dopamine.was the chemosensory transmitter, to the present-day recognition that chemosensation very probably involves the concerted actions of multiple neuroactive agents, each of which plays a role in the generation and/or modulation of the chemosensory response. Although there is little consensus regarding the complex synaptic events which occur between type-I cells and afferent terminals, considerable progress has been made through the utilization of ever more powerful neurochemical and electrophysiological techniques and the development of greatly refined experimental preparations.


Carotid Body Natural Stimulus Sensory Nerve Ending Nerve Terminals20 Carotid Body Chemoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Boska and B. G. Livett, Substance P protects against desensitization of the nicotinic response in isolated adrenal chromaffin cells, J. Neurochem. 42:618 (1984).CrossRefGoogle Scholar
  2. 2.
    G. Campbell, Cotransmission, Ann. Rev. Pharmacol. Toxicol. 27:51 (1987).CrossRefGoogle Scholar
  3. 3.
    I. L. Chen and R. D. Yates, Two types of glomus cell in the rat carotid body as revealed by α-bungarotoxin binding, J. Neurocytol. 13:281 (1984).CrossRefGoogle Scholar
  4. 4.
    I. L. Chen, J. T. Hansen, and R. D. Yates, Dopamine ß-hydroxylase-like immunoreactivity in the rat and cat carotid body; a light and electron microscopic study, J. Neurocytol. 14:131 (1985).CrossRefGoogle Scholar
  5. 5.
    G.-F. Cheng, B. Dinger, and S. J. Fidone, The release of labeled and unlabeled catecholamine frcxn rabbit carotid body, Soc. Neurosci. Abstr. 13:1111 (1987).Google Scholar
  6. 6.
    M. Colombo, W. Kummer, and C. Heym, Immunohistochemistry of opioid peptides in guinea pig paraganglia, Exp. Brain Res. 16:67 (1987).Google Scholar
  7. 7.
    F. De Castro, Sur la structure et 1’innervation du sinus carotidien de I’homme et des mammiferes. Nouveaux faits sur 1’innervation et la fonction du glomus caroticum. Etudes anatomiques et physiologiques, Trab. Lab. Invest. Biol. Univ. Madrid 25:331 (1928).Google Scholar
  8. 8.
    M. A. Delpiano, H. Starlinger, M. Fischer, and H. Acker, The c-AMP content of the cat carotid body in vivo and in vitro under normoxia and after stimulation hy hypoxia, in: “The Peripheral Arterial Chemoreceptors,” D. J. Pallot, ed., Oxford University Press, New York (1984).Google Scholar
  9. 9.
    B. G. Dinger, L. Almaraz, and S. J. Fidone, Nicotinic and muscarinicinduced release of dopamine in cat and rabbit carotid body, Soc. Neurosci. Abstr. 11:745 (1985).Google Scholar
  10. 10.
    B. Dinger, C. Gonzales, K. Yoshizaki, and S. Fidone, Localization and function of cat carotid body nicotinic receptors. Brain Res. 339: 295 (1985).CrossRefGoogle Scholar
  11. 11.
    B. G. Dinger, T. Hirano, and S. J. Fidone, Autoradiographic localization of muscarinic receptors in rabbit carotid body. Brain Res. 367:328 (1986).CrossRefGoogle Scholar
  12. 12.
    C. Eyzaguirre and P. Zapata, A discussion of possible transmitter or generator substances in carotid body chemoreceptors, “Arterial Chemoreceptors,” R. W. Torrance, ed.. Blackwell, Oxford (1968).Google Scholar
  13. 13.
    C. Eyzaguirre, S. Fidone and K. Nishi, Recent studies on the generation of chemoreceptor impulses, “The Peripheral Arterial Chemoreceptors,” M. J. Purves, ed., Cambridge University Press, London (1975).Google Scholar
  14. 14.
    S. J. Fidone, C. Gonzalez, and K. Yoshizaki, Effects of hypoxia on catecholamine synthesis in rabbit carotid body in vitro, J. Physiol. (Lond.) 333:79 (1982).Google Scholar
  15. 15.
    S. J. Fidone, C. Gonzalez, and K. Yoshizaki, Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro, J. Physiol. (Lond.) 333;93 (1982).Google Scholar
  16. 16.
    S. J. Fidone and C. Gonzalez, Initiation and control of chemoreceptor activity in the carotid body, in: “Handbook of Physiology. The Respiratory System, Sect. 3, Vol. II, Part I,” A.P. Fishman, ed.. Am. Physiological Society, Bethesda (1986).Google Scholar
  17. 17.
    H. Folgering, H. Ponte, and T. Sadig, Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit, J. Physiol. 325:1 (1982).Google Scholar
  18. 18.
    M. D. Gershon, The identification of transmitters to smooth muscle, in; “Smooth Muscle,” E. Bülbring, A. F. Brading, A. W. Jones, and T. Tomita, eds.. The Williams and Wilkins Co., Baltimore (1970).Google Scholar
  19. 19.
    R. Gerzer, E. Böhme, F. Hofmann, and G. Schultz, Soluble guanylate cyclase purified from bovine lung contains heme and copper, FEBS Lett. 132:71 (1981).CrossRefGoogle Scholar
  20. 20.
    G. P. Gewirtz and I. J. Kopin, Effect of intermittent nerve stimulation on norepinephrine synthesis and mobilization in the perfused cat’s spleen, J. Pharmacol. Exp. Ther. 175:514 (1970).Google Scholar
  21. 21.
    A. Gomez-Nino, G. F. Cheng, K. Yoshizaki, C. Gonzalez, B. Dinger, and S. Fidone, Regulation of the release of dopamine and norepinephrine from rabbit carotid body, in: “Arterial Chemoreception,” C. Eyzaguirre, S. J. Fidone, R. S. Fitzgerald, S. Lahiri, and D. M. McDonald, eds., Springer-Verlag, New York (in press).Google Scholar
  22. 22.
    G. R. Hanson, L. F. Jones, and S. Fidone, Physiological chemoreceptor stimulation decreases enkephalin and substance P in the carotid body. Peptides 7:767 (1986).CrossRefGoogle Scholar
  23. 23.
    A. Harmer and P. Keen, Chemical characterization of substance P-like immunoreactivity in primary afferent neurons. Brain Res. 220:203 (1981).CrossRefGoogle Scholar
  24. 24.
    C. Heymans, J. J. Bouckaert, and L. Dautrebande, Sinus carotidien etreflexes respiratoires; sensibilite des sinus carotidiens aux sub-stances chimiques. Action stimulante respiratoire reflexe du sulfure de sodium, du cyanare de potassium, de la nicotine et de la lobeline. Arch. Int. Pharmacodyn. Ther. 40:54 (1931).Google Scholar
  25. 25.
    T. Hokfelt, B. Everitt, B. Meister, T. Melander, M. Schalling, O. Johansson, J. M. Lundberg, A.-L. Hulting, C. Cuello, H. Hemmings, C. Ouimet, I. Walaas, P. Greengard, and M. Goldstein, Neurons with’ multiple messengers with special reference to neuroendocrine systems. Recent Progr. Horm. Res. 42:1 (1986).Google Scholar
  26. 26.
    S. Katsuki, W. Arnold, C. Mittal, and F. Murad, Stimulation of guany late cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine, J. Cyclic Nuc. Res. 3:23 (1977).Google Scholar
  27. 27.
    G. C. Kirby and D. S. McQueen, Characterization of opioid receptors in the cat carotid body involved in chemosensory depression in vivo, Br. J. Pharmac. 88:889 (1986).Google Scholar
  28. 28.
    I. J. Kopin, G. R. Breese, K. R. Krauss, and V. K. Weise, Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation, J. Pharmacol. Exp. Ther. 161; 271 (1968).Google Scholar
  29. 29.
    J.-F. Kuo and P. Greengard, An assay method for cyclic AMP and cyclic CMP based upon their abilities to activate cyclic AMP-dependent and cyclic GMP-dependent protein kinase. Adv. Cyclic Nuc. Res. 2:41 (1972).Google Scholar
  30. 30.
    S. C. Landis, P. C. Jackson, J. R. Fredien, and J. Thibault, Cate chol ami nergic properties of cholinergic neurons and synapses in adult rat ciliary ganglion, J. Neurosci. 7:3574 (1987).Google Scholar
  31. 31.
    J. M. Lauweryns, L. Van Ranst, R. V. Lloyd, and D. T. O’Connor, Chromogranin in bronchopulmonar neuroendocrine cells. Immunocyto- chemical detection in human, monkey and pig respiratory mucosa, J. Histochem. Cytochem. 35:113 (1987).CrossRefGoogle Scholar
  32. 32.
    B. G. Livett, Chromaffin cells and chromaffin granules, in: “Encyclopedia of Neurosci.,” G. Adelman, ed., Birkhäuser, Boston (1987).Google Scholar
  33. 33.
    J. M. Lundberg, Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands: Morphological, biochemical and functional studies. Acta Physiol. Scand. 112:1 (1981).CrossRefGoogle Scholar
  34. 34.
    P. D. Marley, Desensitization of the nicotinic secretory response of adrenal chromaffin cells. Trends Pharmacol. Sci. 9:102 (1988).CrossRefGoogle Scholar
  35. 35.
    D. S. McQueen, Effects of substance P on carotid chemoreceptor activity in the cat, J. Physiol. (Lond.) 302:31 (1980).Google Scholar
  36. 36.
    D. S. McQueen, Pharmacological aspects of putative transmitters in the carotid body, in: “Physiology of the Peripheral Arterial Chemoreceptors,” H. Acker and R. G. O’Regan, eds., Elsevier, Amsterdam (1984).Google Scholar
  37. 37.
    D. S. McQueen and Y. Evrard, Effects of selective antagonists on responses of cat carotid body chemoreceptors to hypoxia and almitrine, (Abstract) IXth International Symp. on Arterial Chemoreceptors, Park City, Utah, USA (1988).Google Scholar
  38. 38.
    A. K. Mir, D. J. Pallot, and S. R. Nahorski, Catecholamines: Their receptors and cyclic AMP generating systems in the carotid body, in: “The Peripheral Arterial Chemoreceptors,” D. J. Pallot, ed., Oxford University Press, New York (1984).Google Scholar
  39. 39.
    L. Monti-Bloch and C. Eyzaguirre, A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors. Brain Res. 193:449 (1980).CrossRefGoogle Scholar
  40. 40.
    L. Monti-Bloch and C. Eyzaguirre, Effects of methionineenkephalin and substance P on the chemosensory discharge of the cat carotid body. Brain Res. 338:297 (1985).CrossRefGoogle Scholar
  41. 41.
    E. Mulligan and S. Lahiri, Cat carotid body chemoreceptor responses before and after nicotine receptor blockade with alpha-bungarotoxin, J. Auton. Nerv. Syst. 18:25 (1987).CrossRefGoogle Scholar
  42. 42.
    A. Obeso, S. Fidone, and C. Gonzalez, Pathways for calcium entry into type I cells: significance for the secretory response, in: “Chemoreceptors in Respiratory Control,” J. A. Ribeiro and D. J. Pallot, eds., Croom Helm, London (1987).Google Scholar
  43. 43.
    T. Perez-Garcia, L. Axmaraz, and C. Gonzalez, Modulation of the secretory response in carotid body chemoreceptor cells by adenylate cyclase activating agents, Soc. Neurosci. Abstr. 14:80 (1988).Google Scholar
  44. 44.
    J. P. Perkins, Adenyl cyclase. Adv. Cyclic Nuc. Res. 3:1 (1973).Google Scholar
  45. 45.
    N. R. Prabhakar, Mechanisms of action of tachykinins in the carotid body: Evidence for possible extra- and intracellular effects of the peptides, (Abstract) IXth International Symp. on Arterial Chemoreceptors, Park City, Utah, USA (1988).Google Scholar
  46. 46.
    N. R. Prabhakar, J. Mitra, and N. S. Cherniack, Role of substance P in hypercapnic excitation of carotid chemoreceptors, J. Appl. Physiol. 63:2418 (1987).Google Scholar
  47. 47.
    N. R. Prabhakar, M. Runold, Y. Yamamoto, M. Langercrantz, and C. Von Euler, Effects of substance P antagonist on the hypoxia-induced carotid chemoreceptor activity. Acta Physiol. Scand. 121:301 (1984).CrossRefGoogle Scholar
  48. 48.
    K. B. Seamon and J. W. Daly, Forskolin, cyclic AMP and cellular physiology. Trends Pharmacol. Sci. 4:120 (1983).CrossRefGoogle Scholar
  49. 49.
    V. S. Von Euler and B. Pernow, “Substance P,” Raven Press, New York (1977).Google Scholar
  50. 50.
    W.-J. Wang, G.-F. Cheng, B. G. Dinger, and S. J. Fidone, Effects of hypoxia on cyclic nucleotide formation in rabbit carotid body in vitro, Neurosci Lett., (in press).Google Scholar
  51. 51.
    Z.-Z. Wang, L. J. Stensaas, S. J. Fidone, and B. Dinger, Co-localization of neuroactive agents in the carotid body, in: “Arterial Chemoreception,” C. Eyzaguirre, S. J. Fidone, R. S. Fitzgerald, S. Lahiri, and D. M. McDonald, eds., Springer-Verlag, New York (in press).Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • S. Fidone
    • 1
  • C. Gonzales
    • 1
  • B. Dinger
    • 1
  • L. Stensaas
    • 1
  1. 1.Department of PhysiologyUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations