Advertisement

Capillary Ultrastructure and Microcirculatory Function of Malignant Tumors

  • Bernhard Endrich
  • Frithjof Hammersen
  • Konrad Messmer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 242)

Abstract

Organisation and recruitment of the vascular system comprises one of the fundamental aspects of tumor biology. In most neoplasms, there is a peculiar arrangement of living cells around some vascular arborizations on which they depend for nutrition, growth and metastasis. For studies of the vascular system in tumors, cellular implants have been employed primarily. Such techniques provided the opportunity to demonstrate distinct morphologic changes induced first in neighboring vessels of the host, with new capillaries sprouting from existing capillaries and venules.1,2,3,4,5

Keywords

Basal Lamina Capillary Density Tumor Blood Flow Amelanotic Melanoma Vascular Morphology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.A. Eddy and W. Casarett, Development of the vascular system in the hamster malignant neurilem-moma, Microvasc Res 6:63–82 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    E. Eriksson and H.A. Zarem, Growth and differentiation of blood vessels,In “Microcirculation.” Vol. I. G. Kaley, B.M. Altura, eds., University Park Press, Baltimore, London, Tokyo pp. 393–419 (1977).Google Scholar
  3. 3.
    M.A. Gimbrone, R.S. Cotran, S.B. Leapman and J. Folkman, Tumor growth and neovascularization: an experimental model using the rabbit cornea, JNCI 52:413–427 (1974).PubMedGoogle Scholar
  4. 4.
    C.M. Goodall, A.G. Sanders and P. Shubik, Studies of vascular patterns in living tumors with atransparent chamber inserted in the hamster cheek pouch,JNCI 35:497–521 (1965).PubMedGoogle Scholar
  5. 5.
    B.A. Warren, The vascular morphology of tumors. In Tumor blood circulation. Angiogenesis, vascular morpholoy and blood flow of experimental and human tumors.” H.I. Petersen, ed., CRC Press, Boca Raton, Florida, USA, pp. 1–47 (1979).Google Scholar
  6. 6.
    B.A. Warren, Tumor angiogenesis. In “Tumor blood circulation. Angiogenesis, vascular morphology and blood flow of experimental and human tumors.” H.I. Petersen, ed., CRC Press, Boca Raton, Florida, USA, pp. 48–75 (1979).Google Scholar
  7. 7.
    T.E. Dudar and R.K. Jain, Microcirculatory flow changes during tissue growth, Microvasc Res 25:1–21 (1983).PubMedCrossRefGoogle Scholar
  8. 8.
    J.G. Simpson and R.A. Eraser, Angiogenese in malignen Tumoren, Prog Appl Microcirc 2:1–14 (1983).Google Scholar
  9. 9.
    J. Folkman and C. Haudenschild, Angiogenesis in vitro. Nature 288:551–556 (1980).PubMedCrossRefGoogle Scholar
  10. 10.
    J. Folkman, E. Merler, C. Abernathy and G. Williams, Isolation of a tumor factor responsible forangiogenesis, J Exp Med 133:275–288 (1971).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Kumar, A. Keegan, A. Erroi, D. West, P. Kumar and J. Gaffney, Responses of tissue cultured endothelial cells to angiogenesis factors — a review. TAF and endothelial cells. Prog Appl Microcirc 4:54–75 (1984).Google Scholar
  12. 12.
    O. Hudlicka and K.R. Tyler, “Angiogenesis. The growth of the vascular system.” Academic Press, Harcourt Brace Jovanovich Publishers, London, Orlando, San Diego, New York, Austin, Montreal, Sydney, Tokyo, Toronto (1986).Google Scholar
  13. 13.
    B. Endrich and K. Messmer, Quantitative analysis of the Microcirculation in the awake animal. In “Handbook of Microsurgery.” Vol. I, W.L. Olszewski, ed., CRC Press, Boca Raton, Florida, USA, pp 79–105 (1984).Google Scholar
  14. 14.
    B. Endrich, A. Goetz and K. Messmer, Distribution of microflow and oxygen tension in hamster melanoma. Int J Microcirc Clin Exp 1:81–99 (1982).PubMedGoogle Scholar
  15. 15.
    B. Endrich, F. Hammersen, A. Goetz and K. Messmer, Microcirculatory blood flow, capillary morphology and local oxygen pressure of the hamster amelanotic melanoma A-Mel-3, JNCI 68:475–485 (1982).PubMedGoogle Scholar
  16. 16.
    B. Endrich and F. Hammersen, Morphologic and hemodynamic alterations in capillaries duringhyperthermia. In “Hyperthermia in Cancer Treatment.” Vol. II. L.J. Anghileri, J. Robert, ed., CRC Press, Boca Raton, Florida, USA, pp 17–47 (1986).Google Scholar
  17. 17.
    F. Hammersen, U. Osterkamp-Baust and B. Endrich, Ein Beitrag zum Feinbau terminaler Strombahnen und ihrer Entstehung in bösartigen Tumoren, Prog Appl Microcirc 2:15–51 (1983).Google Scholar
  18. 18.
    F. Hammersen, B. Endrich and K. Messmer, The fine structure of tumor blood vessels: I. Participation of non-endothelial cells in tumor angiogenesis, Int J Microcirc Clin Exp 4:31–43 (1985).PubMedGoogle Scholar
  19. 19.
    I.F. Tannock, Population kinetics of carcinoma cells, capillary endothelial cells and fibroblasts in atransplanted mouse mammary tumor,Cancer Res 30:2470–2476 (1970).PubMedGoogle Scholar
  20. 20.
    D.G. Hirst, J. Denekamp and B. Hobson, Proliferation kinetics of endothelial and tumor cells in three mouse mammary carcinomas. Cell Tiss Kinet 15:251–262 (1982).Google Scholar
  21. 21.
    J. Denekamp, Vasculature as a target for tumor therapy. Prog Appl Microcirc 4:28–38 (1984).Google Scholar
  22. 22.
    W.D. Thompson, K.J. Shiach, R.A. Fraser, L.C. Mc Intosh and J.G. Simpson, Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth, J Path 151:323–332 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    W. Funk, B. Endrich and K. Messmer, A novel method for follow-up studies of the microcirculation in non malignant tissue implants. Res Exp Med 186:259–270 (1986).CrossRefGoogle Scholar
  24. 24.
    W. Funk, B. Endrich, K. Messmer and M. Intaglietta, Spontaneous arteriolar vasomotion as a determinant of peripheral vascular resistance, Int J Microcirc Clin Exp 2:11–25 (1983).PubMedGoogle Scholar
  25. 25.
    M. Intaglietta and K. Messmer, Microangiodynamics, peripheral vascular resistance and the normal microcirculation. Int J Microcirc Clin Exp 2:3–10 (1983).PubMedGoogle Scholar
  26. 26.
    P. Vaupel: Oxygen supply to malignant tumors, In Tumor blood circulation. Angiogenesis, ascular morphology and blood flow of experimental and human tumors.” H.I. Petersen, ed., CRC Press, Boca Raton, Florida, USA, pp. 143–168 (1979).Google Scholar
  27. 27.
    P. Rubin and G. Casarett, Microcirculation of tumors. Part I: Anatomy, function and necrosis, Clin Radiol 17:220–229 (1966).PubMedCrossRefGoogle Scholar
  28. 28.
    T. Oda, A. Lehmann and B. Endrich, Capillary blood flow in the amelanotic melanoma of the hamster after isovolemic hemodilution, Biorheology 21:509–520 (1984).PubMedGoogle Scholar
  29. 29.
    P. Vaupel and W. Mueller-Klieser, Hemodilution in isolated tumor perfusion,Biorheology 21:521–528 (1984).PubMedGoogle Scholar
  30. 30.
    H.S. Reinhold and B. Endrich, Tumor microcirculation as a target for hyperthermia. Int J Hyperthermia 2:111–137 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bernhard Endrich
    • 1
    • 2
  • Frithjof Hammersen
    • 1
    • 2
  • Konrad Messmer
    • 1
    • 2
  1. 1.Department of Experimental SurgeryUniversity of HeidelbergGermany
  2. 2.Institute of AnatomyTechnical University of MunichGermany

Personalised recommendations