Effects of Biological Response Modifiers on the Growth and Differentiation of Terminal Deoxynucleotidyl Transferase Containing Lymphocytes

  • Irving Goldschneider
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 145)


The ability of certain biological response modifiers to induce the differentiation of lymphoid cells has been utilized to study the origins and developmental potentials of TdT+ cells, Most efforts have concerned the induction of T cell markers on TdT+ cells or the induction of TdT itself. The first successful experiments were conducted with bone marrow cells, but this approach has since been extended to cells from thymus and peripheral Iymphoid tissues. In addition, the role of growth regulating factors in the generation of TdT+ cells has been studied in vitro in cell and organ culture sytems. Relatively little work has been done on the induction of B cell markers on TdT+ cells, and vice versa. Therefore, the present report will be limited to a description of some of the effects of inducing agents on TdT+ members of the T cell lineage. For convenience, the discussion will be divided into considerations of prethymic, thymic and postthymic cells. A tentative synthesis of these results with the data from ontogenetic studies (see ref. 1, these Proceedings) will be attempted in the concluding remarks.


Bone Marrow Cell Mouse Bone Marrow Biological Response Modifier Mouse Thymus Human Epidermal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goldschneider, I. Ontogeny of TdT-positive cells in rats and mice, (in press, these Proceedings)Google Scholar
  2. 2.
    White, A. Ghemistry and biological actions of products with thymic hormone-like activity. Biochem. Actions of Hormones. 7: 1 (1980).Google Scholar
  3. 3.
    Komuro, K, Goldstein, G., and Boyse, E. A. Thymus- repopulating capacity of cells that can be induced to differentiate to T cells in vitro, J, Immunol. 115: 195 (1975).Google Scholar
  4. 4.
    Silverstone, A., Cantor, H., Goldstein, G., and Baltimore, D. Terminal deoxynucleotidyl transferase is found in prothymocytes. J. Exp. Med. 144; 543 (1976).PubMedCrossRefGoogle Scholar
  5. 5.
    Silverstone, A., Rosenberg, N., Baltimore, D., Sato, V.L., Scheid, M.P., and Boyse, E.A. Correlating terminal deoxynucleotidyl transferase and cell-surface markers in the pathway of l3aiiphocyte ontogeny. In Differentiation of Normal and Neoplastic Hematopoietic Cells (Clarkson, B., Marks, P.A. and Till, J.E., eds.). Cold Spring Harbor Laboratory. P. 433 (1978).Google Scholar
  6. 6.
    Pazmino, N.H., Ihle, J.N., McEwan, R.N., and Goldstein, A.L. Control of dfferentiation of thymocyte precursors in the bone marrow by thymic hormones. Cancer Treat. Rep. 62; 1749 (1978).PubMedGoogle Scholar
  7. 7.
    Goldschneider, I., Ahmed, A., Bollum, F.J. and Goldstein, A.L. Induction of terminal deoxynucleotidyl transferase and Lyt antigens with thymosin; Identification of multiple subsets of proth)niiocytes in mouse bone marrow and spleen. Proc. Nat. Acad. Sci, 78; 2469 (1981).PubMedCrossRefGoogle Scholar
  8. 8.
    Pazmino, N.H., Ihle, J.N., and Goldstein, A.L. Induction in vivo and vitro of terminal deoxynucleotidyl transferase by thymosin in bone marrow cells from athymic mice. Exp. Med. 147; 708 (1978).CrossRefGoogle Scholar
  9. 9.
    Goldschneider, I., Gregoire, K.E., Barton, R.W., and Bollum, F.J. Demonstration of terminal deoxynucleotidyl transferase in thymocytes by Immunofluorescence. Proc. Nat. Acad. Sci. USA 74; 734 (1977).PubMedCrossRefGoogle Scholar
  10. 10.
    Rubenfeld, M., Silverstone, A.E., Knowles, D., de Sostoa, A., Halper, J., and Edelson, R. Induction of T-cell differentiation by human epidermal cells. Invest. Dermatol. 74; 252 (1980).Google Scholar
  11. 11.
    Rubenfeld, M., Knowles, D., Halper, J., Edelson, R., Silverstone, A. and de Sosta, A. The skin and T-cell differentiation. N. Eng. J. Med. 303; 1304 (1980).CrossRefGoogle Scholar
  12. 12.
    Jager, G. and Lau, B. Expression of common acute Ijrmphoblastic leukemia antigen and terminal deoxynucleotidyl transferase in normal mononuclear blood cells during diffusion chamber culture (submitted for publication).Google Scholar
  13. 13.
    Janossy, G., Bollum, F.J., Bradstock, K.F., McMichael, A., Rapson, N. and Greaves, M.F. Terminal transferase-positive human bone marrow cells exhibit the antigenic phenotype of common acute lymphoblastic leukemia. J. Immunol. 123; 1525 (1979).PubMedGoogle Scholar
  14. 14.
    Bollum, F.J. Terminal transferase; Biological studies, in Advances in Enzymology (A. Meister, ed.), John Wiley, New York, Vol. 47. P. 347 (1978).Google Scholar
  15. 15.
    Gregoire, K.E., Goldschneider, I., Barton, R.W., and Solium, F.J. Ontogeny of terminal deoxynucleotidyl transferase positive cells in lymphohemopoietic tissues of rat and mouse. J. Immunol 123; 1347 (1979).PubMedGoogle Scholar
  16. 16.
    Vines, R.L., Coleman, M.S., and Hutton, J.J. Reappearance of terminal deoxynucleotidyl transferase containing cells in rat bone marrow following corticosteroid administration. Blood 501 (1980).Google Scholar
  17. 17.
    Hu, S.-K., Low, T.L.K., and Goldstein, A.L. In vivo induction of terminal deoxynucleotidyl transferase by thymosin in hydrocortisone acetate treated mice. Fed. Proc. 38; 107 (1979).Google Scholar
  18. 18.
    Goldschneider, I., Metcalf, D., Battye, F., and Mandel, T. Analysis of rat hemopoietic cells on the fluorescence-activated cell sorter. I. Isolation of pluripotent hemopoietic stem cells and granulocyte-macrophage progenitor cells. J. Exp. Med. 152; 419 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    Goldschn eider, I., Metcalf, D., Mandel, T., and Bollum, F.J. Analysis of rat hemopoietic cells on the fluorescenceactivated cell sorter. II. Isolation of terminal deoxynucleotidyl transferase-positive cells. J. Exp. Med. 152; 438 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    Whittum, J.A., Goldschneider, I., and Zurier, R.B. Effects of prostaglandin E-on terminal deoxynucleotidyl transferasepositive T cell progenitors in NZB/W F, and BALB/C mice. Fed. Proc. 39; 1130 (1980).Google Scholar
  21. 21.
    Bäsch, R. and Kadish, J.L. Hematopoietic thymocyte precursors. J. Exp. Med. 145; 405 (1977).PubMedCrossRefGoogle Scholar
  22. 22.
    Greiner, D.L., Goldschneider, I., Barton, R.W. and Lubaroff, D.M. A quantitative assay system for thymocyte regeneration in the rat. Transplant. Proc. J. 1457 (1981).Google Scholar
  23. 23.
    Goodwin, J.S. and Webb, D.R. Regulation of the immune response by prostaglandins. Clin. Immunol. Immunopath. 15; 106 (1980).CrossRefGoogle Scholar
  24. 24.
    Strom, T.B., Lundin, A.P., and Carpenter, C.B. Role of cyclic nucleotides in Ijrmphocyte activation and function. Prog. Clin. Immunol. 3; 115 (1977).PubMedGoogle Scholar
  25. 25.
    Parker, (1979). The role of intracellular mediators in the immune response. J. Biology of the Lymphokines (S. Cohen, E.G. Pick, and J.J. Oppenheim, eds.). Academic Press, New York. P. 541 (1979).Google Scholar
  26. 26.
    Kuehl, F.A. Jr., Cirillo, V.J., and Oien, H.G. Prostaglandincyclic nucleotide interactions in mammalian tissues. Prostaglandins; Chemical and Biological Aspects (S. Karim, ed.). University Park Press, Baltimore. P. 191 (1976).Google Scholar
  27. 27.
    Kurland, J. and Moore, M.A.S. Modulation of hematopoiesis by prostaglandins. Exp. Hemat. 5; 357 (1977).PubMedGoogle Scholar
  28. 28.
    Scheid, M.P., Goldstein, G., and Boyse, E.A. The generation and regulation of lymphocyte populations. Evidence from differentiative induction systems vitro. J. Exp. Med. 147; 1727 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    Bach, M.A. and Bach, J.F. Studies on thymus products. VI. The effects of cyclic nucleotides and prostaglandins on rosetteforming cells. Interactions with thymic factor. Eur. J. Immunol. 3; 778 (1973).PubMedCrossRefGoogle Scholar
  30. 30.
    Webb, D.R., Nowowiejski, I., Dauphinee, M., and Talal, N. Antigen-induced alterations in splenic prostaglandin and cyclic nucleotide levels in NZB mice. J. Immunol 118; 446 (1977).PubMedGoogle Scholar
  31. 31.
    Galvano, S.E., Mark, D.A., Good, R.A., and Fernandesz, G. Age-related changes in lymphoid tissue content of prostaglandins in (NZB X NZW)F mice. Fed. Proc. 40; 974 (1981).Google Scholar
  32. 32.
    Fitzpatrick, F.A. and Stringfellow, D.A. Virus and interferon effects on cellular prostaglandin biosynthesis. Immunol 125; 431 (1980).Google Scholar
  33. 33.
    Tocco, D.J., Rosenblum, G., Martin, G.M. Absorption, metabo lism and excretion of thiabendazole in man and laboratory animals. Toxicol. Appi.Pharmacol. 9; 31 (1966).CrossRefGoogle Scholar
  34. 34.
    Lundy, J. and Lovett, E.J. Immunomodulation with thiabendazole: a review of immunological properties and efficacy in combined modality cancer therapy. Gancer Treat. Rep. 62; 1955 (1978).Google Scholar
  35. 35.
    Lovett, E.J. and Lundy, J. The effects of thiabendazole in a mixed leukocyte culture. Transplantation 24; 93 (1977).PubMedCrossRefGoogle Scholar
  36. 36.
    Donskoy, E., Lovett, E.J., Gonran, P.B., and Lundy, J.L. Morphologic studies with thiabendazole, an immunomodulator. Fed. Proc. 39; 1148 (1980).Google Scholar
  37. 37.
    Lundy, J., Donskoy, E., Elgebaly, S., and Goldschneider, I. Thiabendazole and lymphohematopoietic maturation. Gancer Res (in press).Google Scholar
  38. 38.
    Sharkis, S.J., Ahmed, A., Sensenbrenner, L.L., Jedrzjczak, W.W., and Sell, K.W. Thymic regulation of hematopoiesis. In Hematopoietic Gell Differentiation (D. Golde, M.J. Gline, D. Metcalf, and G.F. Fox, eds.). Academic Press, New York. P. 491 (1978).Google Scholar
  39. 39.
    Staber, F.G. and Metcalf, D. Humoral regulation of splenic hemo poiesis in mice. Exp. Hematol. (in press).Google Scholar
  40. 40.
    Dexter, T.M., Allen, T.D., and Lajtha, L.G. Gonditions controlling the proliferation of haemopoietic stem cells vitro. J. Gell. Physiol. 91: 335 (1977).CrossRefGoogle Scholar
  41. 41.
    Schräder, J., Goldschneider, I., Bollum, F.J., and Schräder, S. In vitro studies of lymphocyte differentiation. II. Generation of terminal deoxynucleotidyl transferase positive cells in long term culture of mouse bone marrow. Immunol. 122: 2337 (1979).Google Scholar
  42. 42.
    Hayashi, J., Goldschneider, I., and Bollum, F.J. vitro culture of terminal deoxynucleotidyl transferase-positive rat bone marrow cells. Fed. Proc. 39; 1133 (1980)Google Scholar
  43. 43.
    Sato, G.H. (1975). The role of serum in cell culture. In Biochemical Actions of Hormones (G. Litwack, ed.). Academic Press, New York p. 391 (1975).Google Scholar
  44. 44.
    Gospodarowicz, D. Purification of a fibroblast growth factor from bovine pituitary. J. Biol. Ghem. 250; 2525 (1975).Google Scholar
  45. 45.
    Watson, J., Gillis, S., Manbrook, J., Mochizuki, D., and Smith, K.A. Biochemical and biological characterization of lymphocyte regulatory molecules. Purification of a class of murine lymphoklnes. J. Exp. Med. 150: 849 (1979).CrossRefGoogle Scholar
  46. 46.
    Mason, D.W., Brldeau, R.J., McMaster, W.R., Webb, M., White, R.A., and Williams, A.F. Monoclonal antibodies that define T-lymphocyte subsets in the rat. Iii Monoclonal Antibodies (Kennett, R.H., McKearn, T.J. and Bechtol, K.B., Eds.), Plenum Press, New York. P. 251 (1980).CrossRefGoogle Scholar
  47. 47.
    Mandel, T. Differentiation of epithelial mouse thjrmus. Z. Zellforsch. 106; 498 (1970).PubMedCrossRefGoogle Scholar
  48. 48.
    Ball, W. D. A quantitative assessment of mouse thymus differen tiation. Exp. Cell Res. 31; 82 (1963).PubMedCrossRefGoogle Scholar
  49. 49.
    Schlesinger, M. Antigens of the thymus. Prog. Allergy 16; 214 (1972).PubMedCrossRefGoogle Scholar
  50. 50.
    Owen, J.J.T. and Raff, (1970). Studies on the differentiation of thymus-derived lymphocytes. J. Exp. Med. 132: 1216 (1970).Google Scholar
  51. 51.
    Borum, K. Cell kinetics in mouse thymus studied by simultaneous use of H-thymidine and colchicine. Cell Tissue Kinet. 545 (1973).Google Scholar
  52. 52.
    Goldschneider, I., Mandel, T., and Bollum, F.J. Cyclical and reciprocal generation of terminal deoxynucleotidyl transferase positive and negative cells in explanted fetal mouse thymuses. (In preparation).Google Scholar
  53. 53.
    Goldschneider, I., Shortman, K., McPhee, D., Linthicum, S., Mitchell, G., Battye, F., and Bollum, F.J. Identification of subsets of proliferating low Thy 1 cells in thymus cortex and medulla (submitted for publication),Google Scholar
  54. 54.
    Shortman, K. and Jackson, H. The differentiation of T lymphocytes. I. Proliferation kinetics and interrelationships of subpopu- lations of mouse thymus cells. Cell. Immunol. 12; 230 (1974).PubMedCrossRefGoogle Scholar
  55. 55.
    Fathman, C.G., Small, M., Herzenberg, L.A., and Weissman, I.L. Th3nnus cell maturation. II. Differentiation of three “mature” subclasses in vivo. Cell. Immunol. 15; 109 (1975).PubMedCrossRefGoogle Scholar
  56. 56.
    Cayre, Y., De Sostoa, A., and Silverstone, A.E. Isolation of a subset of thymocytes inducible for terminal transferase biosynthesis. J. Immunol. 126; 553 (1981).PubMedGoogle Scholar
  57. 57.
    Astaldi, G.C.B., Astaldi, A., Wijermans, Groenewovd, M., van Bemmel, T, Schellekens, P.T.A., and Eijsvoogel, V.P. A thymus- dependent serum factor active on precursors of mature T cells. In Cell Biology and Immunology of Leukocyte Function (Quastel, M.R., ed.). Academic Press, New York. P. 221 (1979).Google Scholar
  58. 58.
    Hu, S.-K., Low, T.L.K., and Goldstein, A.L. Modulation of termi nal deoxynucleotidyl transferase (TdT) iji vitro by thymosin fraction 5 and purified thymosin a, in normal thymocytes. Fed. Proc. 39; 1131 (1980).Google Scholar
  59. 59.
    Draber, P. and Kisielow, P. Identification and characterization of immature thymocytes responsive to T cell growth factor. Eur. J. Immunol. 11; 1 (1981).PubMedCrossRefGoogle Scholar
  60. 60.
    Irle, C., Piguet, P.F., and Vassalli, P. In vitro maturation of immature thymocytes into immunocompetent T cells in the absence of direct thymic influence. J. Exp. Med. 148: 32 (1978).Google Scholar
  61. 61.
    Nagasawa, K. and Mak, T.W. Phorbol esters induce differentiation in human malignant T l5rmphoblasts. Proc. Nat. Acad. Sci. USA 77: 2964 (1980).PubMedCrossRefGoogle Scholar
  62. 62.
    Dougherty, T. F. Effects of hormones on l5nnphatic tissue. Physiol. Rev. 32; 339 (1952).Google Scholar
  63. 63.
    Ishidate, M. and Metcalf, D. The pattern of l3rmphopoiesis in the mouse thymus after cortisone administration or adrenalectomy. Aust. J. Exp. Biol. 41; 637 (1963).CrossRefGoogle Scholar
  64. 64.
    Blomgren, H. and Andersson, B. Characteristics of the immuno competent cells in the mouse thymus: Cell population changes during cortisone-induced atrophy and subsequent regeneration. Cell. Immunol. 1; 545 (1971).CrossRefGoogle Scholar
  65. 65.
    Jaffe, H.L. The influence of the suprarenal gland on the th3nmus. II. Direct evidence of regeneration of the involuted th3rmus following double supraadrenalectomy. J. Exp. Med. 40; 619 (1924).PubMedCrossRefGoogle Scholar
  66. 66.
    Claesson, M. H. Diurnal variations in thymic lymphoid cell decay. Studies of intact, adrenalectomized, and adrenaline-treated mice. Acta Endocrinologica 70: 247 (1972).PubMedGoogle Scholar
  67. 67.
    Kung, P.C., Silverstone, A.E., McCaffrey, R.P., and Baltimore, D. Murine terminal deoxynucleotidyl transferase: Cellular distribution and response to cortisone. J. Exp. Med. 141; 855 (1975).PubMedGoogle Scholar
  68. 68.
    Ernstrom, V. Hormonal influences on thymic release of Ijrmpho- cytes into the blood, Hormones and the Immune Response, Ciba Foundation Study Group No. 36 (G.E.W. Wolstenholme and J. Knight, eds.), Churchill, London, p. 53 (1970).Google Scholar
  69. 69.
    Ritter, M.A. Embryonic mouse thymocyte development. Enhancing effect of corticosterone at physiological levels. Immunology 33: 241 (1977).PubMedGoogle Scholar
  70. 70.
    Horrobin, D.F., Manku, M.S., Oka, M., et al. Nutritional regu lation of T lymphocyte function. Med. Hypoth. 5: 969 (1979).CrossRefGoogle Scholar
  71. 71.
    Winkelstein, A. and Kelley, V.E. The pharmacological effects of PGE on murine lymphocytes. Blood 55: 437 (1980).PubMedGoogle Scholar
  72. 72.
    Holmes, M. and Burnet, F.J. Thymic changes in NZB mice and hybrids. J The Thymus (G.E.W. Wolstenholm, and R. Porter, eds.). Little, Brown, Boston. P. 381 (1965).Google Scholar
  73. 73.
    De Vries, M.J. and Hijmans, W. Pathological changes of the thymic epithelial cells and autoimmune disease in NZB, NZW and B/W mice. Immunology 12; 179 (1967).PubMedGoogle Scholar
  74. 74.
    Dauphinee, M., Palmer, D.W., Talal, N. Evidence for an abnormal microenvironment in the thymus of New Zealand Black mice. J. Immunol. 115; 1054 (1975).PubMedGoogle Scholar
  75. 75.
    Talal, N. Autoimmunity and lymphoid malignancy in New Zealand Black mice. Prog. Clin. Immunol. 2; 101 (1975).Google Scholar
  76. 76.
    Zurier, R.B., Sayadoff, D.M., Torrey, S.B., and Rothfield, N.F. Prostaglandin E, treatment of NZB/NZW mice. I. Prolonged survival of female mice. Arth. Rheum. 20: 723 (1977).CrossRefGoogle Scholar
  77. 77.
    Homo, R., Duval, D., Thierry, C. and Serrow, B. J. Steroid Biochem. (in press) (1980).Google Scholar
  78. 78.
    Khalil, A., Rappaport, H., Florentin, I., Bennoun, M., Davigny, M. and Mathe, G. Comparative study of the histologic reactions to intravenous injections of heat-killed Pseudomonas aeruginosa and of BCG, Biomedicine 30: 200 (1979).PubMedGoogle Scholar
  79. 79.
    Sasaki, R., Bollum, F.J., and Goldschneider, I. Transient populations of terminal transferase-positive (TdT) cells in juvenile rats and mice. J. Immunol.125; 2501 (1980).PubMedGoogle Scholar
  80. 80.
    Small, M., Lasser-Weiss, M., and Daniel, V. Release of immature cells from the thymus during solid tumor growth; Identification by assay of TdT activity. J. Immunol. 123; 259 (1979).PubMedGoogle Scholar
  81. 81.
    Stutman, O. Intrathymic and extrathjrmic T cell maturation. Immunol. Rev. 42: 138 (1978).PubMedCrossRefGoogle Scholar
  82. 82.
    Roelants, G.E., London, J., Mayor Withey, K.S., and Serrano, B. Characterization of the Thy-1, Tla and Ig phenotype of peanut agglutinin-positive cells in adult, embryonic and nude mice using double immunofluorescence. Eur. J. Immunol. 9; 139 (1979).PubMedCrossRefGoogle Scholar
  83. 83.
    Goldschneider, I. Early stages of lymphocyte development. Cur. Top. Develop. Biol. 14; 33 (1980).CrossRefGoogle Scholar
  84. 84.
    Goldschneider, I. and Barton, R.W. Development and differentia tion of lymphocytes. J The Cell Surface in Animal Embryogenesis and Development (Poste, G. and Nicolson, G.L., eds.); Elsevier/North-Holland, Amsterdam. P. 599 (1976).Google Scholar
  85. 85.
    Cohen, J.J. and Fairchild, S. S. Thymic control of prolifera tion of T cell precursors in bone marrow. Proc. Nat. Acad. Sci. USA 76; 6587 (1979).PubMedCrossRefGoogle Scholar
  86. 86.
    Moore, M.A.S. and Owen, J.J.T. Experimental studies on the devel opment of the thymus. J. Exp. Med. 126; 715 (1967).PubMedCrossRefGoogle Scholar
  87. 87.
    LeDourin, N.M. and Jotereau, F.V. Tracing of cells of the avian thymus through embryonic life in interspecific chimeras. J. Exp. Med. 142; 17 (1975).CrossRefGoogle Scholar
  88. 88.
    Shortman, K. The pathway of T-cell development within the thymus. Prog. Imunol. 3; 197 (1977).Google Scholar
  89. 89.
    Baltimore, D. Is terminal deoxynucleotidyl transferase a somatic mutagen in l)rmphocytes. Nature 248; 409 (1974).PubMedCrossRefGoogle Scholar
  90. 90.
    Bollum, F.J. Terminal deoxynucleotidyl transferase; source of immunological diversity. Karl August Forster Lectures, Akad. Wiss. U. Lit. (Mainz), Steiner Verlog, P.1 (1975).Google Scholar
  91. 91.
    Bollum, F.J. and Goldschneider, I. Terminal deoxynucleotidyl transferase and lymphocyte differentiation. Membranes, Receptors and the Immune Response (Kohier, H. and Cohen, E.D., eds.); Alan R. Liss, New York. P. 189 (1980).Google Scholar
  92. 92.
    Hoffbrand, A.V. Function of terminal deoxynucleotidyl trans ferase. (in press, these Proceedings).Google Scholar
  93. 93.
    Herberman, R.B., Timonen, T., Reynolds, C., and Ortaldo, J.R. Characteristics of NK cells. In Natural Cell-Mediated Immunity Against Tumors (R.B. Herberman, Ed.); Academic Press, New York. P. 89 (1980).Google Scholar
  94. 94.
    Barton, R.W., Tausche, F., and Goldschneider, I. Evidence for the cellular origin of Gross virus-induced leukemia in the rat; Description of a unique LDH isozyme sub-band in leukemic lymphoid cells and lymphohemopoietic precursor cells. J. Immunol. 125; 2299 (1980).PubMedGoogle Scholar
  95. 95.
    Gillis, S., Union, N.A., Baker, P.E., and Smith, K.A. The in vitro generation and sustained culture of nude mouse cytolytic T-lymphocytes. J. Exp. Med. 149; 1460 (1979).PubMedCrossRefGoogle Scholar
  96. 96.
    Scollay, R. and Weissman, I.L. T cell maturation: Thymocyte and thymus migrant subpopulations defined with monoclonal antibodies to the antigens Lyt-1, Lyt-2, and ThB. J. Immunol. 124; 2841 (1980).Google Scholar
  97. 97.
    Mathieson, B.J., Sharrow, S.O., Rosenberg, Y. and Hammerling, V. Lyt 1+23-cells appear in the thymus before Lyt 123+ cells. Nature 289; 179 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1982

Authors and Affiliations

  • Irving Goldschneider
    • 1
  1. 1.Department of PathologyUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations