Advertisement

The Mechanism of Oxide Layer Formation in Aqueous Electrolytes

  • Karl Hauffe

Abstract

If metals such as iron, nickel, zinc, and copper are placed in aqueous electrolytes, then a variety of phenomena can be observed in the attack by the electrolyte ions and the oxidizing gases which are dissolved in the electrolytes. If the electrolyte contains only the ions of the metal immersed in it, a metal ion potential E can be calculated from the standard potential E 0 (identical with the reaction energy under standard conditions) and the respective metal ion concentration c by means of the Nernst equation: \(E = E_0 \, + \,\frac{{RT}}{{zF}}\,\ln c\) where z; is the valence of the metal ion and F = 96,500 coulombs. We obtain an equilibrium state which is characterized by the fact that an equal number of ions enter and leave the metal per unit time and surface area. Thus, in the equilibrium state the metal is not affected by the electrolyte.

Keywords

Oxide Film Space Charge Layer Formation Solution Current Passive Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Evans, U. R.: Metallic Corrosion, Passivity, and Protection, second ed., London, 1948.Google Scholar
  2. 2.
    Uhlig, H. H.: The Corrosion Handbook, New York, 1948.Google Scholar
  3. 3.
    Masing, G.: “Theorie der Korrosion, ” in Die Korrosion metallischer Werkstoffe, Vol. 1, edited by O. Bauer, O. Kröhnke, and G. Masing, Leipzig, 1936.Google Scholar
  4. 1.
    Beinert, H., and K. F. Bonhoeffer: Z. Elektrochem. 47, 441, 536 (1941)Google Scholar
  5. K. F. Bonhoeffer: Naturwiss. 31, 270 (1943)CrossRefGoogle Scholar
  6. K. F. Bonhoeffer, E. Brauer, and G. Langhammer: Z. Elektrochem. 52, 29 (1948)Google Scholar
  7. K. F. Bonhoeffer, V. Haase, and G. Langhammer: Z. Elektrochem. 52, 60 (1948)Google Scholar
  8. K. F. Bonhoeffer, and G. Langhammer: Z. Elektrochem. 52, 67 (1948)Google Scholar
  9. K. F. Bonhoeffer, and K. J. Vetter: Z. physik. Chem. 196, 142 (1950)Google Scholar
  10. K. F. Bonhoeffer:Z. Metallk. 44, 77 (1953); and their further references.Google Scholar
  11. 2.
    Evans, U. R.: Metallic Corrosion, Passivity, and Protection, second ed., London, 1948.Google Scholar
  12. 3.
    Schottky, W.: “Passivität und Lösungsstrom,” in Halbleiterprobleme, Vol. 2, p. 233, edited by W. Schottky, Braunschweig, 1955.Google Scholar
  13. 4.
    Vetter, K. J.: “Über den Mechanismus der Passivschichtbildung,” in. Passivierungs- und Anlaufvorgänge an Metalloberflächen, edited by H. Fischer, K. Hauffe, and W. Wiederholt, Berlin/Göttingen/Heidelberg, Springer, 1956.Google Scholar
  14. 5.
    Vetter, K. J., and K. Arnold: Z. Elektrochem. 64, 244 (1960).Google Scholar
  15. 1.
    Evans, U. R.: J. Chem. Soc., (1930), 482Google Scholar
  16. U. R. Evans, and I. D. G. Berwick: J. Chem. Soc. (1952), 432.Google Scholar
  17. 2.
    Tronstad, L., and C. W. Borgmann: Trans. Faraday Soc. 30, 349 (1934).CrossRefGoogle Scholar
  18. 3.
    Tödt, F.: Z. Elektrochem. 55, 331 (1951).Google Scholar
  19. 4.
    Bonhoeffer, K. F.: Z. Metallk. 44, 77 (1953), including a bibliography covering the work of U. F. Franck, K. J. Vetter, and others.Google Scholar
  20. 5.
    Uhlig, H. H.: Ann. N. Y. Acad. Sci. 58, 843 (1954).CrossRefGoogle Scholar
  21. 6.
    Elze, J., and H. Fischer: Metalloherfläche (A) 6, 177 (1952)Google Scholar
  22. T. P. Hoar and R. D. Holliday: J. Appl. Chem. 3, 502 (1953).CrossRefGoogle Scholar
  23. 1.
    Suhrmann, R.: Z. Elektrochem. 56, 351 (1952).Google Scholar
  24. 2.
    Vogt, E.: Ergeh, exakt. Naturw. 11, 321 (1932).Google Scholar
  25. 3.
    Couper, A., and D. Eley: Discussions Faraday Soc. 8, 172 (1950).CrossRefGoogle Scholar
  26. 4.
    Mott, N. F., and H. Jones: Theory of Properties of Metals and Alloys, Oxford, 1936, p. 199Google Scholar
  27. See for example W. Hieber: Angew. Chem. 67, 211 (1955); see also the references.Google Scholar
  28. 2.
    Uhlig, H. H.: Z. Elektrochem. 62, 626 (1958)Google Scholar
  29. in this connection the treatment of N. Hackerman is of interest: N. Hackerman: Z. Elektrochem. 62, 632 (1958)Google Scholar
  30. 1.
    Uhlig, H. H., and A. Geary: J. Electrochem. Soc. 101, 215 (1954).CrossRefGoogle Scholar
  31. 2.
    Hauffe, K.: Angew. Chem. 67, 189 (1955).CrossRefGoogle Scholar
  32. 3.
    Uhlig, H. H., and S. S. Lord Jr.: J. Electrochem. Soc. 100, 216 (1953).CrossRefGoogle Scholar
  33. 4.
    Müller, W. J.: Z. Elektrochem. 30, 401 (1924)Google Scholar
  34. Müller, W. J.: Wiener Monatsh. 48, 559 (1927)Google Scholar
  35. Franck, U. F.: Z. Naturforsch. 4a, 378 (1949).Google Scholar
  36. 6.
    Bonhoeffer, K. F., and U. F. Franck: Z. Elektrochem. 55, 180 (1951).Google Scholar
  37. 1.
    Günterschulze, A., and H. Betz; Z. Physik. 91, 70 (1934)CrossRefGoogle Scholar
  38. See also W. Ch. van Geel: Physica 17, 761 (1951).CrossRefGoogle Scholar
  39. 2.
    Verwey, E. J. W.: Physica 2, 1059 (1935)CrossRefGoogle Scholar
  40. Verwey, E. J. W.: Aljel. Natuurk. Koninkl. Ned. Akad. Wetenschap. No. 7, p. 97 (1953).Google Scholar
  41. 3.
    Cabrera, N., and N. F. Mott: Rept. Progr. in Phys. 12, 163 (1949).Google Scholar
  42. 4.
    Vermilyea, D. A.: Acta Met. 1, 282 (1953)CrossRefGoogle Scholar
  43. Vermilyea, D. A.: Acta Met. 2, 482 (1954).CrossRefGoogle Scholar
  44. 5.
    Torrisi, A. F.: J. Electrochem. Soc. 102, 176 (1955).CrossRefGoogle Scholar
  45. 6.
    Dewald, J. F.: J. Electrochem. Soc. 102, 1 (1955).CrossRefGoogle Scholar
  46. 7.
    Young, L.: Proc. Roy. Soc. (A) 244, 41 (1958)CrossRefGoogle Scholar
  47. A. R. Bray, P. W. M. Jacobs, and L. Young: Proc. Phys. Soc. 71, 405 (1958).CrossRefGoogle Scholar
  48. 1.
    Vetter, K. J.: Z. Elektrochem. 58, 230 (1954)Google Scholar
  49. see also K. J. Vetter: Z. Elektrochem. 62, 642 (1958)Google Scholar
  50. N. D. Tomaschow: Z. Elektrochem. 62, 717 (1958).Google Scholar
  51. 1.
    Hauffe, K.: Werkstoffe u. Korrosion 6, 117 (1955).CrossRefGoogle Scholar
  52. 2.
    Weil, K. G., and K. F. Bonhoeffer: Z. physik. Chem. [NF] 4, 175 (1955).CrossRefGoogle Scholar
  53. 3.
    Grimley, T. B., and N. F. Mott: Discussions Faraday Soc. 1, 3 (1947)CrossRefGoogle Scholar
  54. T. B. Grimley: Proc. Roy. Soc. (A) 201, 40 (1950).CrossRefGoogle Scholar
  55. 4.
    Klein, E., and R. Matejek: Z. Elektrochem. 61, 1127 (1957).Google Scholar
  56. 5.
    Wagner, C.: Z. Elektrochem. 63, 1037 (1959).Google Scholar
  57. 6.
    Dewald, J. F.: J. Electrochem. Soc. 102, 1 (1955).CrossRefGoogle Scholar
  58. 7.
    A. R. Bray, P. W. M. Jacobs, and L. Young: Proc. Phys. Soc. 71, 405 (1958)CrossRefGoogle Scholar
  59. 1.
    Young, L.: Trans. Faraday Soc. 52, 502 (1956).CrossRefGoogle Scholar
  60. Bray, A. R., P. W. M. Jacobs, and L. Young: Froc. Fhys. Soc. 71, 405 (1958)Google Scholar
  61. 3.
    Young, L.: Trans. Faraday Soc. 52, 515 (1956).CrossRefGoogle Scholar
  62. 1.
    Young, L.: Can, J. Chem. 37, 276 (1959)CrossRefGoogle Scholar
  63. Young, L.: Proc. Roy. Soc. (A) 258, 496 (1960)CrossRefGoogle Scholar
  64. Young, L.: Acta Met, 5, 711 (1957).CrossRefGoogle Scholar
  65. 2.
    Bean, C. R., J. C. Fisher, and D. A. Vermilyea: Phys. Rev. 101, 551 (1956).CrossRefGoogle Scholar
  66. 3.
    Evans, U. R., and H. A. Miley; J. Chem. Soc. (1937) 1295.Google Scholar
  67. 4.
    Evans, U.R.: Trans. Faraday Soc. 40, 125 (1944)Google Scholar
  68. U. R. Evans, and I. D. G. Berwick: J. Chein. Soc. (1952), 3432Google Scholar
  69. K. J. Vetter: Z. Elektrochem. 55, 274, 675 (1951).Google Scholar
  70. 5.
    Tronstad, L., and C. W. Borgmann: Trans. Faraday Soc. 30, 349 (1934).CrossRefGoogle Scholar
  71. 6.
    Bonhoeffer, K. F., and K. J. Vetter: Z. physik. Chem. 196, 142 (1950)Google Scholar
  72. K. G. Weil and K. F. Bonhoeffer: Z. physik. Chem. [NF] 4, 175 (1955)CrossRefGoogle Scholar
  73. K. J. Vetter: Z. Elektrochem. 56, 16, 106 (1952).Google Scholar
  74. 7.
    Schwarz, W.: Z. Elektrochem. 55, 170 (1951).Google Scholar
  75. 8.
    Torrisi, A. F.: J. Electrochem. Soc. 102, 176 (1955).CrossRefGoogle Scholar
  76. Vermilyea, D. A.: Acta Met. 1, 282 (1953CrossRefGoogle Scholar
  77. 1.
    Hauffe, K.: Z. Metallk. 44, 576 (1953)Google Scholar
  78. K. Hauffe, and I. Pfeiffer: Z. Metallic. 45, 554 (1954).Google Scholar
  79. 2.
    Vetter, K. J.: Z. Elektrochem. 58, 230 (1954).Google Scholar
  80. 3.
    Hauffe, K.: Werkstoffe u. Korrosion 6, 117 (1955).CrossRefGoogle Scholar
  81. 1.
    Nagayama, M., and M. Cohen: J. Electrochem. Soc. 109, 781 (1962).CrossRefGoogle Scholar
  82. 1.
    Landsberg, R., and M. Hollnagel: Z. Elektrochem. 58, 680 (1954).Google Scholar
  83. 2.
    Kolotyrkin, Y. M.: Z. Elektrochem. 62, 664 (1958).Google Scholar
  84. 3.
    Hauffe, K., and I. Pfeiffer: Z. Metallk. 45, 554 (1954).Google Scholar
  85. 4.
    Schwabe, K., and G. Dietz: Z. Elektrochem. 62, 751 (1958)Google Scholar
  86. see also in this journal the contribution of G. Okamoto, H. Kobayashi, N. Nagayama, and N. Sato, p. 775.Google Scholar
  87. 5.
    Bonhoeffer, K. F., and K. J. Vetter: Z. physik. Chem. 196, 127 (1950).Google Scholar
  88. 6.
    Bonhoeffer, K. F.: Angew. Chem. 67, 1 (1955)CrossRefGoogle Scholar
  89. K. F. Bonhoeffer, and G. Vollheim: Z. Naturforsch. 8b, 406 (1953).Google Scholar
  90. 7.
    Franck, U. F.: Habilitationsschr. Univ. Göttingen, 1954Google Scholar
  91. U. F. Franck and K. G. Weil: Z. Elektrochem. 56, 814 (1952).Google Scholar
  92. 8.
    Franck, U. F.: Z. Elektrochem. 62, 649 (1958).Google Scholar
  93. 9.
    Franck, U. F.: Z. physik. Chem. [NF] 3, 183 (1955).CrossRefGoogle Scholar
  94. 1.
    Hauffe, K., and B. Ilschner: Z. Elektrochem. 58, 382 (1954).Google Scholar
  95. 2.
    Uhlig, H. H., and S. S. Lord Jr.: J. Electrochem. Soc. 100, 216 (1953)CrossRefGoogle Scholar
  96. 1.
    Schottky, W., Passivität und Lösungsstrom: inHalbleiterprobleme, Vol. 2, p. 233, Braunschweig, 1955.Google Scholar
  97. 2.
    See for instance the review by H. Gerischer: Angew. Chem. 70, 285 (1958).CrossRefGoogle Scholar
  98. 1.
    Vetter, K. J.: Z. physik. Chem. [NF] 4, 165 (1955CrossRefGoogle Scholar
  99. 1.
    Bonhoeffer, K. F., and U. F. Franck: Z. Elektrochem. 55, 180 (1951).Google Scholar
  100. 1.
    Weil, K. G., and K. F. Bonhoeffer: Z. physik. Chem. [NF] 4, 175 (1955).CrossRefGoogle Scholar
  101. 1.
    Lossow, W. W., and B. N. Kabalow: Zhnr. Fiz. Khim. SSSR 28, 824, 914 (1954).Google Scholar
  102. 1.
    Brattain, W. H., and C. G. B. Garrett: Bell System Tech. J. 34, 129 (1955).Google Scholar
  103. 2.
    See for instance K. Bohnenkamp and H. J. Engell: Z. Elektrochem. 61, 1184 (1957).Google Scholar
  104. 3.
    Dewald, J. F.: in Semiconductors, Reinhold, New York, 1959, p. 727Google Scholar
  105. Dewald, J. F.: Bell System Tech. J. 39, 615 (1960).Google Scholar
  106. 4.
    Gerischer, H.: Z. physik. Chem. [NF] 26, 223, 325 (1960)CrossRefGoogle Scholar
  107. Gerischer, H.: Z. physik. Chem. [NF] 27, 48 (1961)CrossRefGoogle Scholar
  108. H. Gerischer and F. Beck: Z. physik. Chem. [NF] 24, 378 (1960).CrossRefGoogle Scholar
  109. 5.
    Gobrecht, H., O. Meinhardt, and L. Schulz: Z. Elektrochem. 67, 142, 156 (1963)Google Scholar

Copyright information

© Plenum Press 1965

Authors and Affiliations

  • Karl Hauffe

There are no affiliations available

Personalised recommendations