Advertisement

Lattice Defect Phenomena and Diffusion Processes in Ionic, Covalent, and Metallic Crystals

  • Karl Hauffe

Abstract

Chemists have known for a long time that many inorganic chemical compounds, e.g., the oxides (Cu2O, FeO, NiO, etc.) and sulfides (Cu2S, Ag2S, NiS, etc.) and intermetallic phases in alloy systems do not have a stoichiometric composition, but rather exhibit a more-or-less large excess or deficit of one or another of the constituent components of the crystal. In such cases, the fact that the crystal lattice is not ideally filled is easily understandable. However, there are also compounds with stoichiometric composition, e.g., the alkali and silver halides, which can exhibit considerable disorder in their lattice site occupation, as we shall see later. It can be said, in general, that these lattice building blocks (atoms and ions) leave their lattice sites with increasing frequency as the temperature increases and go either to an interstitial lattice site or, if this is not possible for spatial energetic reasons, “break out” to the surface and leave behind an unoccupied lattice site, which serves again as an empty site, which can be occupied, in turn, by particles lying deeper in the interior. Thus, the unoccupied lattice site (vacancy) moves toward the interior, while the ions migrate to the surface. A condition of equilibrium is obtained when the particle and vacancy currents, which are in opposite directions, are of equal magnitude. At constant pressure or volume and constant crystal composition, the concentration of the lattice defects is determined solely by the temperature. In succeeding sections, we group the above events following Frenkel1, Jost2, and Schottky and Wagner3,4 under the term lattice defect phenomena.

Keywords

Lattice Defect Diffusion Data Ionic Crystal Acta Meet Kirkendall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    Frenkel, J.: Z. Physik. 35, 652 (1926).Google Scholar
  2. 2.
    Jost, W.: J. Chem. Phys. 1, 466 (1933)Google Scholar
  3. Jost, W.: Trans. Faraday Soc. 34, 860 (1938).Google Scholar
  4. 3.
    Wagner, C., and W. Schottky: Z. physik. Chem. (B) 11, 163 (1930).Google Scholar
  5. 4.
    Wagner, C.; Z. physik. Chem. (Bodenstein-Festband) 177, (1931)Google Scholar
  6. Wagner, C.; Z. physik. Chem. (Bodenstein-Festband) (B) 22, 181 (1933)Google Scholar
  7. 1.
    Schottky, W.: Z. physik. Chem. (B) 29, 335 (1935).Google Scholar
  8. 2.
    Koch, E., and C. Wagner: Z. physik. Chem. (B) 38, 295 (1937).Google Scholar
  9. 3.
    Stasiw, O., and J. Teltow: Ann. Physik. (6) 1, 261 (1947).Google Scholar
  10. 4.
    Teltow, J.: Ann. Physik. (6) 5, 63, 71 (1949)Google Scholar
  11. Teltow, J.: Z. physik. Chem. 195, 213 (1950).Google Scholar
  12. 1.
    Tubandt, C.: Handbuch Exp. PhysikXII 1, Leipzig, 1932, pp. 394ffGoogle Scholar
  13. 1.
    Ure, R. W., Jr.: J. Chem. Phys. 26, 1363 (1957).Google Scholar
  14. 2.
    Croatto, U., and A. Mayer: Oazz. Chim. Ital. 73, 199 (1943)Google Scholar
  15. U. Croatto and M. Bruno: Oazz. Chim. Ital. 78, 95 (1948).Google Scholar
  16. 3.
    Jost, W.: Trans. Faraday Soc. 34, 860 (1938).Google Scholar
  17. 4.
    Mott, N. F., and M. J. Littleton: Trans. Faraday Soc. 34, 485 (1938)Google Scholar
  18. N. F. Mott and R. W. Gumey: Electronic Processes in Ionic Crystals, Oxford, New Jersey, 1948.Google Scholar
  19. 1.
    Laves, F.: Chemie 57, 30 (1944).Google Scholar
  20. 2.
    The conductivity minimum appearing at the beginning indicates a greater mobility of silver ions via interstitial lattice positions—see E. Koch and C. Wagner: Z. physik. Chem. (B) 38, 295 (1937).Google Scholar
  21. 1.
    See, for example, K. Hauffe: Reaktionen in und an festen Stoffen, Springer, Berlin/ Göttingen/Heidelberg, 1955, pp.73ff.Google Scholar
  22. 1.
    Pohl, R. W.: Physik. Z. 36, 732 (1935)Google Scholar
  23. Pohl, R. W.: Physik. Z. 39, 36 (1938).Google Scholar
  24. 2.
    Banks, F. R.: Phys. Rev. 59, 376 (1941).Google Scholar
  25. 3.
    Miller, P. H., Jr.: Phys. Rev. 60, 890 (1941).Google Scholar
  26. 4.
    Lindner, R.: Acta Chem. Scand. 6, 457 (1952).Google Scholar
  27. 5.
    Ehrlich, P.: Z. Elektrochem. 45, 362 (1939).Google Scholar
  28. 6.
    Buessem, W. R., and S. R. Butler: Kinetics of High-Temperature Processes, John Wiley, New York, 1959, p. 13.Google Scholar
  29. 1.
    Baumbach, H. H., and C. Wagner: Z. physik. Chem. (B) 22, 199 (1933)Google Scholar
  30. 1.
    Wagner, C.: J. Chem, Phys. 18, 62 (1950).Google Scholar
  31. 2.
    Haulfe, K., and A. L. Vierk: Z. physik. Chem, 196, 160 (1950).Google Scholar
  32. 3.
    Baumbach, H. H., and C. Wagner: Z. physik, Chem. (B) 22, 199 (1933).Google Scholar
  33. 4.
    Bauer, G.: Ann. Physik (5) 30, 433 (1937)Google Scholar
  34. C. A. Hogarth and J. P. Andrews: Phil. Mag. (7) 11, 272 (1949)Google Scholar
  35. R. Glang: Diss. Darmstadt 1955.Google Scholar
  36. 5.
    Earle, M. D.: Phys. Rev. 61, 56 (1942)Google Scholar
  37. See also T. Hurlen: J. Inst. Metals 89, 128 (1960)Google Scholar
  38. K. Hauffe, H. Grunewald, and R. Tränckler-Greese: Z. Elektrochem. 56, 937 (1952)Google Scholar
  39. W. A. Weyl, and T. Forland: Ind. Eng. Chem. 12, 257 (1950)Google Scholar
  40. G. H. Johnson: J. Am. Ceram. Soc. 36, 97 (1953)Google Scholar
  41. See also F. A. Grant: Rev. Mod. Phys. 31, 646 (1959).Google Scholar
  42. Foex, M.: Compt. rend. 215, 534 (1942).Google Scholar
  43. 1.
    Hartmann, W.: Z. Physik 102, 709 (1936).Google Scholar
  44. 2.
    Lashof, T. W.:J. Chem. Phys. 11, 196 (1943).Google Scholar
  45. 3.
    Hauffe, K., and A. L. Vierk: Z. physik. Chem 196, 160 (1950).Google Scholar
  46. 4.
    Hauffe, K., and H. G. Flint: Z. physik. Chem. 200, 199 (1952).Google Scholar
  47. 5.
    Klaiber, F.: Ann. Physik (5) 3, 229 (1929)Google Scholar
  48. C. Wagner: J. Chem. Phys. 21, 1819 (1953).Google Scholar
  49. 6.
    Davidenko, V. A.: Z. Physik. SSSR 4, 170 (1941).Google Scholar
  50. 7.
    Verwey, E. J. W., P. W. Haayman, and F. C. Romeyn: Chem. Weekblad 44, 705 (1948).Google Scholar
  51. 8.
    Stähelin, P., and G. Busch: Helv. Physica Acta 23, 530 (1950).Google Scholar
  52. 9.
    Grimley, R. T., R. P. Burns, and M. G. Inghram: J. Chem. Phys. 35, 557 (1961)Google Scholar
  53. 1.
    Mitoff, S. P.: J. Chem, Phys. 35, 882 (1961).Google Scholar
  54. 2.
    Baumbach, H. H., and C. Wagner: Z. physik, Chem. (B) 22, 199 (1933).Google Scholar
  55. 1.
    Verwey, E. J. W., P. W. Haayman, and F. C. Romeyn: Chem. Weekblad. 44, 705 (1948).Google Scholar
  56. 2.
    Hauffe, K.: Ann. Physik (6) 8, 201 (1950).Google Scholar
  57. 3.
    Schlosser, E. G.: Z. Elektrochem. 65, 453 (1961).Google Scholar
  58. 1.
    See also S. van Houten: J. Phys. Chem. Solids 17, 7 (1960).Google Scholar
  59. Mansfield, R.: Proc. Phys. Soc. (B) 62, 476 (1949).Google Scholar
  60. 3.
    Hauffe, K., and J. Block: Z. physik. Chem, 198, 232 (1951)Google Scholar
  61. Fischer, W. A., and G. Lorenz: Arch. Eisenhuttenw. 28, 497 (1957)Google Scholar
  62. Fischer, W. A., and G. Lorenz: Z. phys. Chem. [NF] 18, 308 (1958).Google Scholar
  63. 4.
    Gundermann, J., K. Hauffe, and C. Wagner: Z. physik. Chem. (B) 37, 148 (1937)Google Scholar
  64. C. Wagner and H. Hammen: Z. physik. Chem. (B) 40, 197 (1938)Google Scholar
  65. N. N. Greenwood and J. S. Anderson: Nature (London) 164, 346 (1949).Google Scholar
  66. 5.
    Wagner, C., and E. Koch: Z. physik. Chem. (B) 32, 439 (1936).Google Scholar
  67. 6.
    Carter, R. E., and F. D. Richardson: J. Metals 6, 1244 (1954).Google Scholar
  68. 7.
    Hauffe, K., and H. Pfeiffer: Z. Metallk. 44, 27 (1953).Google Scholar
  69. 8.
    Martin, R. L.: Nature (London) 165, 202 (1950).Google Scholar
  70. 9.
    Hochberg, B. M., and M. J. Sominski: Physik. Z. Sowjetunion 13, 198 (1938).Google Scholar
  71. 10.
    Nagel, K., and C. Wagner: Z. physik. Chem. (B) 25, 71 (1934)Google Scholar
  72. R.J. Maurer: J. Chem. Phys. 13, 321 (1945).Google Scholar
  73. 11.
    Anderson, J. S., and M. C. Morton: Proc. Roy. Soc. (A) 184, 82 (1945).Google Scholar
  74. 1.
    Baumbach, H. H., H. Dünwald, and C. Wagner: Z. physik. Chem. (B) 22, 226 (1933)Google Scholar
  75. K. Hauffe and H. Grunewald: Z. phyaik. Chem. 198, 248 (1951).Google Scholar
  76. 2.
    Hauffe, K., and G. Tränckler: Z. Physik 136, 166 (1953).Google Scholar
  77. 3.
    Eisenmann, L.: Ann. Physik (5) 38, 121 (1940)Google Scholar
  78. H. Hintenberger: Z. Physik 119, 1 (1942)Google Scholar
  79. C. Wagner: J. Chem. Phys. 18, 62 (1950).Google Scholar
  80. 1.
    Wagner, C.: J. Chem. Phys. 18, 62 (1950).Google Scholar
  81. 2.
    Seltzer, M. S., and J. B. Wagner: J. Chem. Phys. 36, 130 (1962)Google Scholar
  82. G. Simkovich, and J. B. Wagner: J. Chem. Phys., 38, 1368 (1963)Google Scholar
  83. M. S. Seltzer, and J. B. Wagner, Tech. Rept. No. 3, Office; Naval Res., Contract NONR 609(34), Oct. 1961.Google Scholar
  84. 3.
    Bloem, J., and F. A. Kröger: Z. physik. Chem. [NF] 7, 1 (1956).Google Scholar
  85. 4.
    Hauffe, K.: Ergeb. exakt. Naturw. 25, 274ff (1951).Google Scholar
  86. 5.
    Machatschki, F.: Z. Krist. 82, 348 (1932).Google Scholar
  87. 6.
    Barth, T. F. W., and E. Posnjak: Z. Krist. 82, 325 (1932).Google Scholar
  88. 7.
    Verwey, E. J. W., and J. H. De Boer: Ree. trav. chim. 55, 531 (1936)Google Scholar
  89. E. J. W. Verwey and E. L. Heilmann: J. Chem. Phys. 15, 174 (1947)Google Scholar
  90. E. J. W. Verwey, F. De Boer, and J. H. van Santen: J. Chem. Phys. 16, 1091 (1948)Google Scholar
  91. E. J. W. Verwey, F. De Boer, and J. H. van Santen: J. Chem. Phys. 18, 1032 (1950).Google Scholar
  92. Kordes, E.: Z. Krist. 92, 139 (1935).Google Scholar
  93. 1.
    Schmalzried, H.: Z. phya. Chem. [NF] 28, 203 (1961).Google Scholar
  94. 2.
    Schmalzried, H., and C. Wagner: Z. physik. Chem. [NF] 31, 198 (1962)Google Scholar
  95. 1.
    Schmalzried, H.: Z. physik. Chem. [NF] 31, 184 (1962).Google Scholar
  96. 2.
    Schmalzried, H.: Z. phys. Chem. [NF] 33, 111 (1962)Google Scholar
  97. 1.
    Hauffe, K., and H. J. Engell: Z. Elektrochem. 56, 366 (1952)Google Scholar
  98. Hauffe, K., and H. J. Engell: Z. Elektrochem. 57, 762 (1953)Google Scholar
  99. K. Hauffe: Z. Electrochem. 65, 321 (1961)Google Scholar
  100. P. B. Weisz: J. Chem. Phys. 21, 1531 (1953).Google Scholar
  101. 2.
    Schottky, W.: Naturw. 26, 843 (1938)Google Scholar
  102. Schottky, W.: Z. Physik 113, 367 (1939)Google Scholar
  103. Schottky, W.: Z. Physik 118, 539 (1942)Google Scholar
  104. W. Schottky and E. Spenke: Wiss. Veröjfentl. Siemens-Werken 18, 25 (1939)Google Scholar
  105. E. Spenke: Z. Physik 126, 67 (1947)Google Scholar
  106. Schottky, W.: Elektronische Halbleiter, Springer-Verlag, Berlin, 1955.Google Scholar
  107. 1.
    Hauffe, K., and B. Ilschner: Z. Elektrochem. 58, 467 (1954)Google Scholar
  108. 1.
    Bernal, J. D.: Trans. Faraday Soc. 34, 837 (1938).Google Scholar
  109. 2.
    Huntington, H. B., and F. Soitz: Phys. Rev. 61, 315 (1942)Google Scholar
  110. H. B. Huntington: Pkys. Rev. 61, 325 (1942)Google Scholar
  111. F. Soitz: Phys. Rev. 74, 1513 (1948).Google Scholar
  112. 3.
    Zener, C.: Acta Cryst. 3, 346 (1950).Google Scholar
  113. 1.
    Smigelskas, A. D., and E. O. Kirkendall: Trans. AIME 171, 130 (1947).Google Scholar
  114. 2.
    Correa da Silva, L. C., and R. F. Mehl: Trans. AIME 191, 155 (1951).Google Scholar
  115. Bückle, H., and H. Blin: J. Inst. Metals 80, 385 (1951/52).Google Scholar
  116. 4.
    Barnes, R. S.: Proc. Phys. Soc. (B) 65, 512 (1952).Google Scholar
  117. 5.
    Seith, W., and A. Kottmann: Nature. 39, 40 (1952)Google Scholar
  118. W. Seith and R. Ludwig: Z. Metallk. 45, 401 (1954).Google Scholar
  119. 6.
    Seith, W., and A. Kottmann: Angew. Chem. 64, 376 (1952)Google Scholar
  120. 1.
    Seith, W., and A. Kottmann: Angew. Chem. 64, 376 (1952).Google Scholar
  121. 2.
    Seitz, F,: Acta Cryst. 3, 355 (1950).Google Scholar
  122. 3.
    Balluffi, R. W.: J. Appl. Phys. 23, 1407 (1952)Google Scholar
  123. R. W. Balluffi and B. H. Alexander: J. Appl. Phys. 23, 1237 (1952).Google Scholar
  124. 4.
    Seith, W., and H. Wever: Z. Elektrochem. 57, 891 (1953Google Scholar
  125. 1.
    Seith, W., and A. Kottmann: Angew. Chem. 64, 376 (1952).Google Scholar
  126. 2.
    Seith, W., and R. Ludwig: Z. Metallk. 45, 401 (1954).Google Scholar
  127. 3.
    Barnes, R. S.-. Nature 166, 1032 (1950).Google Scholar
  128. 4.
    Balluffi, R. W., and L. L. Seigle: Naturw. 40, 524 (1953)Google Scholar
  129. Balluffi, R. W., and L. L. Seigle: J. Appl. Phys. 25, 607, 1380 (1954)Google Scholar
  130. R. W. Balluffi: Acta. Mat. 2, 194 (1954).Google Scholar
  131. 5.
    Home, G. T., and R. F. Mehl: J. Metals 7, 88 (1955).Google Scholar
  132. 6.
    Birchenall, C. E.: Ind. Eng. Chem. 47, 604 (1955).Google Scholar
  133. 7.
    Shewmon, P. G., and G. R. Love: Ind. Eng. Chem. 53, 325 (1961).Google Scholar
  134. 1.
    Jost, W.: Diffusion in Solids, Liquids, and Gases, Academic Press, New York, 1952Google Scholar
  135. Jost, W.:“Platzwechsel in Kristallen,” in Halbleiterprobleme 2, edited by W. Schottky, Braunschweig, 1955, p. 145.Google Scholar
  136. 2.
    Hauffe, K.: Reaktionen in und an festen Stoffen, p. 259, Springer, Berlin/Göttingen/ Heidelberg, 1955.Google Scholar
  137. 3.
    Seith, W. I Diffusion in Metallen, 2nd ed., Springer, Berlin/Göttingen/Heidelberg, 1955.Google Scholar
  138. 4.
    Lazarus, D.: Solid State Physics 10, 71 (1960).Google Scholar
  139. 5.
    Van Bueren, H. G.: Imperfections in Crystals, Interscience, New York, 1960.Google Scholar
  140. 6.
    Lomer, W. M.: Progr. Metal Phys, 8, 255 (1959).Google Scholar
  141. 7.
    Wagner, C.: J. Electrochem. Soc. 99, 369 (1952).Google Scholar
  142. 8.
    Le Claire, A. D.: Progr, Metal Phys. 4, 265ff (1953).Google Scholar
  143. 9.
    Huntington, H. B., and F. Seitz: Phys. Rev. 61, 315 (1942).Google Scholar
  144. 10.
    Maier, M. S., and H. R. Nelson: Trans. AIME 147, 39 (1942).Google Scholar
  145. 1.
    Nix, F. C., and F. E. Jaumot Jr.: Phys. Rev. 83, 1275 (1951).Google Scholar
  146. 2.
    Brinkman, J. A., C. E. Dixon, and J. C. Meechan: Acta Met. 2, 38 (1954).Google Scholar
  147. 3.
    Bardeen, J.: Phys. Rev. 76, 1403 (1949).Google Scholar
  148. 4.
    Darken, L. S.: Metals Technology, Tech. Publ. No. 2311 (1948)Google Scholar
  149. 5.
    Seitz, F.: Phys. Rev. 74, 1513 (1948)Google Scholar
  150. Seitz, F.: “Fundamental Aspects of Diffusion in Solids, in Phase Transformation in Solids, ASM, New York, 1951, p. 77.Google Scholar
  151. 1.
    Simmons, R. D., and R. W. Balluffi: Phys. Rev. 117, 52 (1960)Google Scholar
  152. Simmons, R. D., and R. W. Balluffi: Phys. Rev. 119, 980 (1960).Google Scholar
  153. 2.
    Seeger, A., and E. Mann: J. Phys. Chem. Solids 12, 326 (1960)Google Scholar
  154. A. Seeger, P. Schiller, and H. Kronmüller: Phil. Mag. 5, 853 (1960).Google Scholar
  155. 3.
    Damask, A., G. Dienes, and V. Weizer: Phys. Rev. 113, 781 (1959).Google Scholar
  156. 4.
    Wert, C. A., and C. Zener: Phys. Rev. 76, 1169 (1949)Google Scholar
  157. C. A. Wert: Phys. Rev. 79, 601 (1950)Google Scholar
  158. C. A. Wert: J. Appl. Phys. 21, 1196 (1950)Google Scholar
  159. Cf. S. Glasstone, K. J. Laidler, and H. Eyring: The Theory of Rate Processes, McGraw- Hill, New York, 1941.Google Scholar
  160. 2.
    Seitz, F.: “Fundamental Aspects of Diffusion in Solids,” in Phase Transformation in Solids, ASM, New York, 1951.Google Scholar
  161. 3.
    Jost, W.: Diffusion in Solids, Liquids, and Gases, Academic Press, New York, 1952.Google Scholar
  162. 4.
    Hauffe, K.: Reaktionen in und an festen Stoffen, p. 223ff, Springer, Berlin/Göttingen/ Heidelberg, 1955.Google Scholar
  163. 5.
    Meakin, J. D., and E. Klokholm: Trans. Am. Inst. Mining, Met., Petrol. Eng. 218, 463 (1960).Google Scholar
  164. 6.
    Snoek, J. L.: Physica 8, 711 (1941).Google Scholar
  165. 7.
    Zener, C.: Phys. Rev. 71, 34 (1947).Google Scholar
  166. 8.
    Thomas, W. R., and G. M. Leak: Phil. Mag. 45, 656, 986 (1954).Google Scholar
  167. 9.
    Stanley, J. K.: Trans. AIME 185, 752 (1949).Google Scholar
  168. 10.
    Fast, J. D., and M. B. Verrijp: J. Iron Steel Inst. 176, 24 (1954)Google Scholar
  169. 1.
    Swalin, R. A.: Acta Met. 5, 443 (1957).Google Scholar
  170. 2.
    Le Claire, A. D.:Progr. Metal Phys. 4, 280ff (1953)Google Scholar
  171. See for instance K. Hauffe: Reaktionen in und an festen Stoffen, Springer, Berlin/Göttingen/Heidelberg, 1955, pp. 259ff.Google Scholar
  172. 2.
    Zener, C.: J. Appl Phys. 22, 372 (1951).Google Scholar
  173. 3.
    Huntington, H. B., and F. Seitz: Phys. Rev. 61, 315, 325 (1942).Google Scholar
  174. 4.
    Buffington, F. S., and M. Cohen: Acta Met. 2, 660 (1954).Google Scholar
  175. 5.
    Le Claire, A. D.: Acta Met. 1, 438 (1953).Google Scholar
  176. 1.
    Zener, C.: Imperfections in Nearly Perfect Crystals, New York, 1952Google Scholar
  177. A. S. Nowick: J. Appl. Phys. 22, 74 (1951)Google Scholar
  178. 1.
    Fisher, J. C.: J. Appl. Phys. 22, 74 (1951).Google Scholar
  179. 2.
    TurnbuIl, D.: Atom Movements, ASM, Clevéland, 1951, ppGoogle Scholar
  180. TurnbuIl, D.: J. Metale 3, 661 (1951)Google Scholar
  181. D. Turnbull and R. E. Hoffman: Acta Met. 2, 419 (1954).Google Scholar
  182. Hauffe, K.: Reaktionen in und an festen Stoffen, Springer, Berlin/Göttingen/Heidelberg, 1955, pp. 401ff.Google Scholar
  183. Hoffman, R. E.: Tracers and Other Techniques of Diffusion Measurements in Atom Movements, ASM, Cleveland, 1951, pp. 51 ff.Google Scholar
  184. 1.
    Barnes, R. S.: Nature 166, 1032 (1950).Google Scholar
  185. 2.
    Achter, M. R., and R. Smoluchowski: J. Appl. Phys. 22, 1260 (1951).Google Scholar
  186. 3.
    Whipple, R. T. P.. Phil. Mag, 45, 1225 (1954).Google Scholar
  187. 4.
    Turnbull, D., and R. E. Hoffman: Acta Met. 2, 551 (1954).Google Scholar
  188. 1.
    Couling, S. R. L., and R. Smoluchowski: J. Appl. Phys. 25, 1538 (1954).Google Scholar
  189. 2.
    Okkerse, B.: Acta Met. 2, 551 (1954).Google Scholar
  190. 3.
    Wajda, E. S.: Acta Met. 2, 184 (1954).Google Scholar
  191. 4.
    Langmuir, I.: J. Franklin Inst. 217, 543 (1934).Google Scholar
  192. 5.
    Bugakow, W., and F. Rybalko: Zhur. Tekh. Fiz. 2, 617 (1935).Google Scholar
  193. 6.
    Zwikker, C. :Physica 7, 189 (1927).Google Scholar
  194. 7.
    Pirani, M., and J. Sandor: J. Inst. Metals 73, 385 (1947).Google Scholar
  195. 8.
    Pfeiffer, I., K. Hauffe, and W. Jaenicke: Z. Elektrochem. 56, 728 (1952).Google Scholar
  196. 9.
    Bragg, L., and J. F. Nye: Proc. Roy. Soc. London (A) 190, 474 (1947).Google Scholar
  197. 10.
    Burgers, J. M.: Proc. Phys. Soc. (B) 52, 23 (1940).Google Scholar
  198. 11.
    Read, W. T., and W. Shockley: Phys. Rev. 78, 275 (1950)Google Scholar
  199. 1.
    Dunn, C. G., and F. Lionetti: Trans. AIME 185, 125 (1949)Google Scholar
  200. Dunn, C. G., and F. Lionetti: Trans. AIME 188, 1245 (1950).Google Scholar
  201. 2.
    Aust, K. T., and B. Chalmers: Proc. Roy. Soc. London (A) 201, 210 (1950).Google Scholar
  202. 3.
    Aust, K. T., and B. Chalmers: Proc. Roy. Soc. London (A) 204, 359 (1950).Google Scholar
  203. 4.
    Cottrell, A. H.: Progr. Metal Phys. 4, 205 (1953).Google Scholar
  204. 5.
    Gjostein, N. A.: Trans. AIME 221, 1039 (1961).Google Scholar
  205. 6.
    Levine, H. S., and C. J. MacCallum: J. Appl. Phys. 31, 595 (1960).Google Scholar
  206. 7.
    Nickerson, R. A., and E. R. Parker: Trans. Am. Soc. Metals 42, 376 (1950).Google Scholar
  207. 8.
    Fraunfelder, H.: Helv. Phys. Acta 23, 347 (1950).Google Scholar
  208. 1.
    Stranski, I. N., and R. Suhrman: Ann. Physik (6) 1, 153, 169 (1947)Google Scholar
  209. A. Eisenloeffel and I. N. Stranski: Z. Metallk. 41, 10 (1950)Google Scholar
  210. E. W. Müller: Ergeh, exakt. Naturw. 27, 290 (1953).Google Scholar
  211. 2.
    Drechsler, M.: Z. Elektrochem, 58, 327, 334, 340 (1954)—extended the investigations of Stranski and Müller.1 Google Scholar
  212. 3.
    Barbour, J. P., and F. M. Charbonnier: Phya. Rev. 117, 1452 (1960)Google Scholar
  213. P. C. Bettler and F. M. Charbonnier: Phys. Rev. 119, 85 (1960)Google Scholar
  214. a Sykes, C., H. H. Burton, and C. C. Gegg: J. Iron Steel Inst. 156, 155 (1947).Google Scholar
  215. b Seith, W., and T. Daur: Z. Elektrochem. 44, 256 (1938).Google Scholar
  216. c.
    Wells, C., according to C. E. Birchenall: “Volume Diffusion,” in Atom Movements, ASM Cleveland, 1951, pp. 112ffGoogle Scholar
  217. d.
    Stanley, J. K.:Trans. AIME 185, 752 (1949).Google Scholar
  218. e.
    Wells, C., W. Batz, and R. F. Mehl: Trans. AIME 188, 553 (1950).Google Scholar
  219. f.
    Bramley, A., and G. Turner: Carnegie Scholarship Memoirs 17, 23 (1938)Google Scholar
  220. g.
    Brower, T. E., B. M. Larsen, and W. E. Schenk: Trans. AIME 61, 113 (1934).Google Scholar
  221. h.
    Birchenall, C. E., and R. F. Mehl: Trans. AIME 188, 144 (1950).Google Scholar
  222. i.
    Ruder, R. C.: Thesis, Carnegie Institute of Technology, 1950.Google Scholar
  223. j.
    Wells, C., and R. F. Mehl: Trans. AIME 145, 329 (1941).Google Scholar
  224. k.
    Ham, J. L.:Trans. Am. Soc. Metals 35, 331 (1945)Google Scholar
  225. l.
    Wells, C., and R. F. Mehl: Trans. AIME 145, 315 (1941).Google Scholar
  226. m.
    Eichenauer, W., H. Künzig, and A. Pebler: Z. Metallic. 49, 220 (1958)Google Scholar
  227. a.
    Wells, C., W. Batz, and R. F. Mehl: Trans. AIME 188, 553 (1950)Google Scholar
  228. a.
    Paschke, M., and A. Hauttmann: Arch. Eiaenhiutenw. 9, 305 (1935).Google Scholar
  229. b Wells, C., and R. F. Mehl:Metals Tech, 7, Tech. Puhl. No. 1180 (1940)Google Scholar
  230. c.
    Darken, L. S.: Trans. AIME, Metals Tech. 15, Tech. Publ. No. 2311 and 2443 (1948)Google Scholar
  231. d.
    Smoluchowski, R.: Phys. Rev. 62, 539 (1942).Google Scholar
  232. e.
    Baukloh, W., F. Schulte, and H. Friedrichs: Arch. Eisenhüttenw. 16, 341 (1943)Google Scholar
  233. f.
    Thomas, W. R., and G. M. Leak:Phil. Mag. 45, 986 (1954).Google Scholar
  234. a.
    Wasilewski, R. J., and G. L. Kehl: Metallurgia 46, 225 (1955).Google Scholar
  235. b.
    Gulbransen, E. A., and K. F. Andrew: J. Electrochem. Soc, 101, 560 (1954)Google Scholar
  236. c.
    Wasilewski, R. J., and G. L. Kehl:J. Inst. Metals 83, 94 (1954/55)Google Scholar
  237. d.
    Mallett, M. W., J. Belle, and B. B. Cleland: J. Electrochem. Soc. 101, 1 (1954)Google Scholar
  238. e.
    Ang, C. Y.: Acta Met. 1, 123 (1953).Google Scholar
  239. f.
    Jenkins, A. E.: J. Inst. Metals 82, 213 (1953/54).Google Scholar
  240. g.
    Pemsler: J. Electrochem. Soc. 105, 760 (1958).Google Scholar
  241. h Bucur, E., and F. C. Wagner: Final Tech. Rep., Contract DA-36–034-ORD-1157-(NP-5502), Sept. 1954.Google Scholar
  242. a.
    Nowick, A. S.: J. Appl. Phys. 22, 1182 (1951); values calculated by the authorGoogle Scholar
  243. b.
    Kuper, A., H. Letaw Jr., L. Slifkin, E. Sonder, and C. T. Tomizuka:Phys. Rev. 96, 1224 (1954).Google Scholar
  244. c.
    Kubaschewski, O.: Trans. Faraday Soc. 46, 713 (1950).Google Scholar
  245. d.
    Eichenauer, W., and A. Pebler: Z. Metallk. 48, 373 (1957).Google Scholar
  246. e.
    Rhines, F. N., and R. F. Mehl: Tran,. AIME 128, 185 (1938).Google Scholar
  247. f.
    Martin, A. B., and F. Asaro:Phys. Rev. 80, 123 (1950)Google Scholar
  248. a.
    B. Martin, R. D. Johnson, and F. Asaro; J. Appl. Phys. 25, 364 (1954). Strong grain boundary diffusion is noticeable below 700°C.Google Scholar
  249. g.
    Matano, C.: J. Phys. (Japan) 9, 41 (1934).Google Scholar
  250. h.
    Vero, J. A.:Kgl. ungar. Palatin-Joseph-Univ. tech. u. Wirtschaftsiviss. Sopron, Mitt, herg-u. hiUtenmänn. Abt. 12, 141 (1940).Google Scholar
  251. i.
    Dunn, J. S.: J. Chem. Soc. 129, 2973 (1926).Google Scholar
  252. j.
    Bugakow, W., and W. Neskutschaw: Zhur. Tekh. Fiz. 4, 1342 (1934)Google Scholar
  253. Bugakow, W., and W. Neskutschaw: Zhur. Tekh. Fiz. 9, 1767 (1939)Google Scholar
  254. Bugakow, W., and F. Rybalko: Zhur. Tekh. Fiz, 5, 1729 (1935).Google Scholar
  255. k.
    Seith, W., and W. Krauss:Z. Electrochem. 44, 98 (1938).Google Scholar
  256. l.
    Thomas, D. E., and C. E. Birchenall: J. Metals 4, 867 (1952)Google Scholar
  257. R. W. Balluffi and B. H. Alexander: J. Metals 4, 1315 (1952).Google Scholar
  258. a.
    Gatos, H. C., and A. Azzam:J. Metals 4, 407 (1952).Google Scholar
  259. b.
    McKay, H. A. C.:Trans, Faraday Soc. 34, 845 (1938)Google Scholar
  260. see also A. M. Sagrubsky: Bull. acad. sci. URSS (1937), 903Google Scholar
  261. A. M. Sagrubsky: Physik. Z. Sowjetunion 12, 118 (1937).Google Scholar
  262. c.
    Duhl, D., K. Hirano, and M. Cohen: Acta. Met. 11, 1 (1963).Google Scholar
  263. d.
    Ebert, H., and G. Trommsdorf: Z. Elecktrochem. 54, 294 (1950).Google Scholar
  264. e.
    Jost, W.: Z. physik. Chem. (B) 16, 123 (1932).Google Scholar
  265. f.
    Liempt, J. A. M. van: Ree. trav. chim. 60, 634 (1941).Google Scholar
  266. g.
    Kubaschewski, O., and H. Ebert: Z. Elektrochem. 50, 138 (1944).Google Scholar
  267. h.
    Jost, W.: Z. physik. Chem. (B) 21, 158 (1933).Google Scholar
  268. i.
    Wertenstein, M. L., and H. Dobrowolska: J. phys. radium 4, 324 (1923)Google Scholar
  269. a.
    Krueger, H., and H. N. Hersh: J. Metals 7, 125 (1955).Google Scholar
  270. b.
    Johnson, W. A.: Trans. AIME 143, 107 (1941).Google Scholar
  271. c.
    Nowick, A. S.: J. Appl. Phys. 22, 1182 (1951); values calculated by the authorGoogle Scholar
  272. d.
    Tomizuka, C. T., and D. Lazarus: J. Appl, Phys. 25, 1443 (1954).Google Scholar
  273. e.
    Kryukov, S. N., and A. A. Zhukovitsky: Dokl. Akad. Nauk. SSSR 90, 739 (1953).Google Scholar
  274. f.
    Eichenauer, W., H. Künzig, and A. Pebler: Z. Metallk. 49, 220 (1958).Google Scholar
  275. g.
    Bückle, H.: Metallforschung 1, 47, 175 (1946).Google Scholar
  276. h.
    Johnson, W. A.:Trans. AIME 147, 331 (1942).Google Scholar
  277. i.
    Jost, W.: Z. physik. Chem. (B) 9, 73 (1930).Google Scholar
  278. j.
    Braune, H.: Z. physik. Chem. 100, 147 (1924).Google Scholar
  279. k.
    Tomizuka, C. T., and L. M. Slifkin: Phys. Rev. 96, 610 (1954).Google Scholar
  280. l.
    Birchenall, C. E.: “Volume Diffusion,” in Atom Movements, ASM, Cleveland, 1951, pp. 112ffGoogle Scholar
  281. m.
    Bugakow, W., and B. Sirotkin: Zhur. Tekh. Fiz. 7, 1577 (1937).Google Scholar
  282. n Tomizuka, C. T., L. M. Slifkin, and D. Lazarus: Bull. Am. Phys. Soc. 28, No. 2, Paper Z-10 (1953).Google Scholar
  283. o.
    Jost, W.: Z. physik. Chem. (B) 21, 158 (1933).Google Scholar
  284. p.
    Wertenstein, M. L., and H. Dobrowolska: J. phys. radium 4, 324 (1923).Google Scholar
  285. q.
    Seith, W., and E. Peretti:Z. Electrochem. 42, 570 (1936).Google Scholar
  286. r.
    Sonder, E., L. M. Slifkin, and C. T. Tomizuka: Phys. Rev. 93, 970 (1954).Google Scholar
  287. s.
    Rollin, B. v.: Phys. Rev. 55, 231 (1939).Google Scholar
  288. t.
    Bugakow, W., and F. Rybalko: Zhur. Tekh. Fiz. 5, 1729 (1935).Google Scholar
  289. u.
    Brutzyk, M., and S. Gerzriken: Zhur. Tekh. Fiz. 20, 428 (1950).Google Scholar
  290. v.
    Hirano, K., M. Cohen, and B. L. Averbach, Acta Met. 11, 463 (1963).Google Scholar
  291. w.
    Eichenauer, W., and G. Müller: Z. Metallk. 53, 321 (1962).Google Scholar
  292. a.
    Beerwald, A. H.: Z. Elektrochem. 45, 789 (1939).Google Scholar
  293. b.
    Mehl, R. F., F. N. Rhines, and K. A. von den Steinen: Metals and Alloys 13, 41 (1941).Google Scholar
  294. c.
    Brick, R. M., and A. Philips:Trans, AIME 124, 331 (1937).Google Scholar
  295. d.
    Nowick, A. S.: J. Appl. Phys. 22, 1182 (1951) values calculated by the author.Google Scholar
  296. e.
    Freche, H. R.: Trans. AIME 122, 326 (1936).Google Scholar
  297. f.
    Bungardt, W., and F. Bollenrath: Z. Metallic, 30, 377 (1938).Google Scholar
  298. g.
    Bungardt, W., and H. Cornelius: Z. Metallic. 34, 360 (1942).Google Scholar
  299. h.
    Eichenauer, W., and A. Pebler: Z. Metallic. 48, 373 (1957).Google Scholar
  300. i.
    Bückle, H.: Z. Elektrochem. 49, 238 (1943)Google Scholar
  301. a.
    Nowick, A. S.: J. Appl. Phys. 22, 1182 (1951); values calculated by the author.Google Scholar
  302. b.
    Hevesy, G. von, W. Seith, and A. Keil: Z. Physik 79, 197 (1932)Google Scholar
  303. Hevesy, G. von, W. Seith, and A. Keil: Z. Metallk. 25, 104 (1933).Google Scholar
  304. c.
    Seith, W., and A. Keil: Z. physik. Chem. (B) 22, 350 (1933).Google Scholar
  305. d.
    Seith, W., and J. G. Laird: Z. Metallk. 24, 193 (1932).Google Scholar
  306. e.
    Roberts-Austen, W. C.: Phil. Trans. Roy. Soc. London (A) 187, 404 (1896).Google Scholar
  307. f.
    Seith, W., and H. Etzold: Z. Elekrochem. 40, 829 (1934)Google Scholar
  308. Seith, W., and H. Etzold: Z. Elekrochem. 41, 122 (1935).Google Scholar
  309. g.
    Seith, W., E. Hofer, and H. Etzold: Z. Elektrochem. 40, 322 (1934).Google Scholar
  310. h.
    Hertzrücken, S. D., M. Butsik, and E. Golubenko: Mém. phys. Ukr. 8, 55 (1939).Google Scholar
  311. i.
    Seith, W.: Z. Elektrochem. 39, 538 (1933)Google Scholar
  312. Seith, W.: Z. Elektrochem. 41, 872 (1935).Google Scholar
  313. j.
    Seith, W., and J. Herrmann:Z. Elektrochem. 46, 213 (1940).Google Scholar
  314. k.
    Hevesy, G. von, and A. Obnitschewa: Nature 115, 674 (1925)Google Scholar
  315. a.
    Agew, N. W., and O. J. Vher: J. Inst. Metals 44, 83 (1930).Google Scholar
  316. b.
    Gruzin, P. L.: Dokl. Akad. Nauk. SSSR 94, 681 (1954), where further information on jD(Co, Cr, W) in ferrites is givenGoogle Scholar
  317. c.
    Suzuoka, T.: Trans. Japan. Inst. Metals 2, 176 (1961).Google Scholar
  318. d.
    Bardenheuer, P., and R. Mueller: Mitt. Kaiser-Wilhelm-Inst. Eisenforsch. Düsseldorf 14, 295 (1932).Google Scholar
  319. e.
    Hicks, L. C.:Trans. AIME 118, 163 (1934).Google Scholar
  320. Hicks, L. C.:More recently Gerzriken and Deghtjar:Zhur. Tekh. Fiz. 20, 1005 (1950), investigated the effect of Ni, Be, Ti, W, Si, Sn, and Nb on the diffusion of Cr in y-Fe. They developed formal physical relationships, such as the dependence of the activation energy of the diffusion on the valence of the impurities and their atomic numbers.Google Scholar
  321. f.
    Heumann, T., and H. Böhmer: Arch. Eisenhüttenw. 31, 749 (1960).Google Scholar
  322. g.
    Fry, A.: Stahl u. Eisen 43, 1039 (1923).Google Scholar
  323. h.
    Owen, E. A.:J. Inst. Metals 73, 471 (1947).Google Scholar
  324. i.
    Wells, C., and R. F. Mehl: Trans. AIME 145, 315 (1941)—the empirical diffusion formula for Mn in y-Fe.DMnY-Fe = (0.486 + 0.011 wt.% Mn) exp(-66,000/RT) was given, which is valid from 0–20 wt.% Mn between 950 and 1450°C, with an accuracy of ± 15%. The influence of C was accounted for in the equation Dc = i)co(l + 2.53 wt.% C), which is valid from 0–1.5% C, where Dqq is the diffusion coefficient for C = 0.Google Scholar
  325. j.
    Grube, G., and F. Liebenwirth: Z. anorg. u. allgem. Chem. 188, 274 (1930).Google Scholar
  326. k.
    Wells, C.: Trans. AIME 145, 329 (1941)—the empirical diffusion formula for the diffusion coefficients of Ni in y-Fe DN1-fb = (0.344 + 0.012 Avt.% Ni) exp(- 67,500/RT) was given, which is valid from 0–20 wt.% Ni between 1050 and 1450°C, with an accuracy of +20%. The influence of C was accounted for in the equation Dc = Dc(l + 2.3 wt.% C).Google Scholar
  327. l.
    Hirano, K., M. Cohen, and B. L. Averbach: Acta Met. 9, 440 (1961).Google Scholar
  328. m.
    Bradshaw, F. J., G. Hoyle, and K. Speight: Nature 171, 488 (1953).Google Scholar
  329. n.
    Bannister, C. N., and W. D. Jones: J. Iron Steel Inst. 124, 71 (1931).Google Scholar
  330. o.
    Grube, G., and K. Schneider: Z. anorg. u. allgem. Chem. 168, 17 (1927).Google Scholar
  331. a.
    Jedele, A.: Z. Eletrochem. 39, 691 (1933).Google Scholar
  332. b.
    Matano, C.: Proc. Phys.-Math. Soc. Japan 15, 405 (1933).Google Scholar
  333. c.
    Kubaschewski, O., and H. Ebert: Z. Elektrochem. 50, 138 (1944).Google Scholar
  334. d.
    Zogagintsev, J.: Appl. Chem. USSB 17, 22 (1944).Google Scholar
  335. e.
    Wertenstein, M. L., and H. Dobrowolska: J. phys. radium 4, 324 (1923).Google Scholar
  336. a.
    Swalin, R. A., and A. Martin:J. Metals, Trans. AIME 206, 567 (1956).Google Scholar
  337. b.
    Jedele, A.: Z. Elektrochem. 39, 691 (1933).Google Scholar
  338. c.
    Matano, C.:Proc. Phys.-Math. Soc. Japan 15, 405 (1933).Google Scholar
  339. d.
    Matano, C.:Mem. Coll. Sci., Kyoto Imp. Univ. 15, 351 (1932).Google Scholar
  340. e.
    Grube, G., and A. Jedele: Z. Elektrochem. 38, 799 (1932).Google Scholar
  341. f.
    Matano, C.:J. Phys. Soc. Japan 8, 109 (1933).Google Scholar
  342. g.
    Smithells, C. J.: Metals Reference Book, London 1949, p. 406.Google Scholar
  343. h.
    Swalin, R. A., A. Martin, and R. Olson: J. Metals, Trans. AIME 207, 936 (1957).Google Scholar
  344. i.
    Ruder, R. C., and C. E. Birchenall: J. Metals, Trans. AIME 191, 142 (1951).Google Scholar
  345. j.
    Rouse, G. F., and R. Forman: Phys. Rev. (2) 82, 574 (1951)Google Scholar
  346. a.
    Berkowitz, A. E., F. E. Jaumot Jr., and F. C. Nix: Phya, Rev. 95, 1185 (1954).Google Scholar
  347. b.
    Byron, E. S., and V. E. Lambert: J. Electrochem. Soc. 102, 38 (1955).Google Scholar
  348. a.
    Schöne, E., O. Stasiw, and J. Teltow: Z. physik. Chem. 197, 145 (1951).Google Scholar
  349. b.
    Wagner, C.: J. Chem. Phys. 18, 1227 (1950).Google Scholar
  350. c.
    Rickert, H., and C. Wagner: Z. Elektrochem. 64, 793 (1960)Google Scholar
  351. a.
    Letaw, H., Jr., M. L. Slifkin, and W. M. Portnoy: Phys. Rev. 93, 892 (1954).Google Scholar
  352. b.
    Penning, P.: Phys. Rev. 110, 586 (1958).Google Scholar
  353. c.
    Fuller, C. S., J. D. Stnithers, J. A. Ditzenberger, and K. B. Wolfstirn: Phys. Rev. 93, 1182 (1954).Google Scholar
  354. d.
    Dunlap, W. C., Jr.:. Phys. Rev. 94, 1531 (1954).Google Scholar
  355. e.
    Dunlap, W. C., Jr.: Phys. Rev. 86, 615 (1952).Google Scholar
  356. f.
    Albers, W.: Solid State Electronics 2, 85 (1961).Google Scholar
  357. g.
    van der Maesen, F., and J. A. Brenkman:Philips Res. Rept. 9, 225 (1954).Google Scholar
  358. h.
    Mcafee, K. B., W. Shockley, and M. Sparks:Phys. Rev. 86, 137 (1952)Google Scholar
  359. W. Bösenberg: Z. Naturforsch. 10a, 285 (1955).Google Scholar
  360. i.
    Fuller, C. S., and J. C. Severiens: Phys. Rev. 96, 21 (1954)Google Scholar
  361. j.
    Fuller, C. S., and J. A. Ditzenberger: J. Appl. Phys. 27, 544 (1956).Google Scholar
  362. k.
    Bugai, A. A., V. E. Rosenko, and E. G. Miselyuk:Zhur. Tekh. Fiz. 27, 207 (1957).Google Scholar
  363. l.
    Fuller, C. S., and J. A. Ditzenberger: J. Appl. Phys. 25, 1439 (1954).Google Scholar
  364. m.
    Fuller, C. S., and J. A. Ditzenberger: Phys. Rev. 91, 193 (1953).Google Scholar
  365. n.
    Struthers, J. D.: J. Appl. Phys. 27, 1560 (1956).Google Scholar
  366. o.
    Verhoogen J.: Am. Mineralogist 37, 637 (1952).Google Scholar
  367. a.
    Seith, W., E. Hofer, and H. Etzold: Z. Elektrochem. 40, 322 (1934).Google Scholar
  368. b Weeton, E. W.: Nat. Advis. Comm. Aeronaut. Rept. 1951, 1.Google Scholar
  369. c.
    Mead, H. W., and C. E. Birchenall: J. Metals 7, 994 (1955).Google Scholar
  370. d.
    Eckert, R. E., and H. G. Drickamer: J. Chem. Phys. 20, 13 (1952).Google Scholar
  371. e.
    Samsonov, G. V.:Dokl. Akad. Nauk SSSR 93, 859 (1953).Google Scholar
  372. f.
    Nelting, H.:Z. Physik 115, 469 (1940).Google Scholar
  373. g.
    Pirani, M., and J. Sandor: J. Inst. Metals 73, 385 (1947).Google Scholar
  374. h.
    Liempt, I. A. M. van: Ree. trav. chim. 64, 239 (1945).Google Scholar
  375. i.
    Liempt, I. A. M. van: Ree. trav. chim. 51, 114 (1932).Google Scholar
  376. j.
    Dushman, S., D. Denissen, and N. B. Reynolds: Phys. Rev. 29, 903 (1927).Google Scholar
  377. k.
    Adda, Y., J. Philibert, and H. Farraggi:Rev. Met. 54, 597 (1957).Google Scholar
  378. l.
    Adda, Y., and J. Philibert:Acta Met. 8, 700 (1960)Google Scholar
  379. a.
    Mead, H. W., and C. E. Birchenall: J. Metals 7, 994 (1955).Google Scholar
  380. b.
    Ruder, R. C., and C. E. Birchenall: J. Metals 3, 142 (1951).Google Scholar
  381. c.
    Nix, F. C., and F. E. Jaumot Jr.: Phys. Rev. (2) 80, 119 (1950)Google Scholar
  382. Nix, F. C., and F. E. Jaumot Jr.: Phys. Rev. 82, 72 (1951)Google Scholar
  383. see also G. W. Callendine Jr., V. C. Ridolfo, and M. L. Pool: Phys. Rev. 86, 642 (1952).Google Scholar
  384. d.
    Hoffman, R. E., and D. Turnbull: J. Appl. Phys. 22, 634 (1951).Google Scholar
  385. e.
    Johnson, R. D., and A. B. Martin: Phys. Rev. 86, 642 (1952).Google Scholar
  386. f.
    Gatos, H. C., and A. Azzam:J. Metals 4, 407 (1952).Google Scholar
  387. g.
    McKay, H. A. C.:Trans. Faraday Soc. 34, 845 (1938)Google Scholar
  388. see also A. M. Sagrubsky: Physik. Z. Sowjetunion 12, 118 (1937).Google Scholar
  389. h.
    Wajda, E. S., G. A. Shirn, and H. B. Huntington:Acta Met. 3, 39 (1955).Google Scholar
  390. i.
    Kuper, A., H. Letaw Jr., L. Slifkin, E. Sonder, and C. T. Tomizuka:Phys. Rev. 96, 1224 (1954).Google Scholar
  391. j.
    Birchenall, C. E., and R. F. Mehl: Trans. AIME 188, 144 (1950)Google Scholar
  392. P. L. Gruzin, J. W. Kornew, and G. W. Kurdjumow: Dokl. Akad. Nauk. SSSR 80, 49 (1951) studied the influence on the self-diffusion of iron.Google Scholar
  393. k.
    Eckert, R. E., and H. G. Drickamer: J. Chem. Phys. 20, 13 (1952).Google Scholar
  394. l.
    Shewman, P. G., and F. N. Rhines: J. Metals 6, 1021 (1954).Google Scholar
  395. m.
    Nachtrieb, N. H., E. Catalano, and J. A. Weil: J. Chem. Phys. 20, 1185 (1952)Google Scholar
  396. R. E. Meyer, and N. H. Nachtrieb: J. Chem. Phys. 23, 405 (1955).Google Scholar
  397. n.
    Nachtrieb, N. H., J. A. Weil, E. Catalano, and A. W. Lawson: J. Chem. Phys. 20, 1289 (1952).Google Scholar
  398. o.
    Hevesy, G. von, and A. Obrutscheva: Nature 115, 674 (1925)Google Scholar
  399. W. Seith, and A. Keil: Z. Physik 79, 197 (1932)Google Scholar
  400. B. Okkerse:Acta Met. 2, 551 (1954) found grain boundary diffusion in lead below 260°C.Google Scholar
  401. p.
    Fensham, P. J.: Austrian J. Sci. Res. (A) 3, 105 (1950).Google Scholar
  402. q.
    Liu, T., and H. G. Drickamer: J. Chem. Phys. 22, 312 (1954)Google Scholar
  403. see also G. A. Shirn, E. S. Wajda, and H. B. Huntington: Acta Met. 1, 513 (1953)Google Scholar
  404. P. H. Miller Jr., and F. R. Banks: Phys. Rev. 61, 648 (1942)Google Scholar
  405. H. C. Gatos, and A. D. Kurtz: J. Metals 6, 616 (1954).Google Scholar
  406. r.
    Kidson, G. V., and R. Ross:Proceedings International Conference on One Use of Radioisotopes in Science Research, Paris 1957.Google Scholar
  407. s.
    Hoffman, R. E., F. W. Picus, and R. A. Ward:Trans. AIME 206, 483 (1956).Google Scholar
  408. t Kurtz, A. D., B. L. Averbach, and M. Cohen: Wright Air Development Center under Contract AF 33 (038)—23281Google Scholar
  409. see also A. D. O Kurtz, Thesis, M.I.T., Cambridge, 1952.Google Scholar
  410. u.
    Shim, G. A.: Acta Met. 3, 87 (1955).Google Scholar
  411. a.
    Johansson, G., and R. Lindner: Acta Chem. Scand. 4, 782 (1952)Google Scholar
  412. R. Lindner: J. Chem. Phys. 23, 410 (1955).Google Scholar
  413. b.
    Murin, A., and Ju. Tausch: Dokl. Akad. Nauk SSSR 80, 579 (1951)Google Scholar
  414. see for example J. Teltow: Z. Elektrochem. 56, 767 (1952).Google Scholar
  415. c.
    Pfeiffer, I., K. Hauffe, and W. Jaenicke: Z. Elektrochem. 56, 728 (1952).Google Scholar
  416. d.
    Allen, R. L., and W. J. Moore: J. Phys. Chem. 63, 223 (1959).Google Scholar
  417. e.
    Peschanski, D.: J. chim. phys. 47, 933 (1950).Google Scholar
  418. f.
    Tubandt, C., H. Reinhold, and W. Jost: Z. phys. Chem. 129, 69 (1927).Google Scholar
  419. g.
    Zimen, K. E., G. Johansson, and M. Hillert: J. Chem. Soc. [London) 392 (1949).Google Scholar
  420. h.
    Redington, R. W. :Phys. Rev. 82, 574 (1951).Google Scholar
  421. i.
    Bever, R. S.: J. Appl. Phys. 24, 1008 (1953).Google Scholar
  422. j.
    Garcia-Verduch, A., and R. Lindner: Arkiv Kemi 5, 313 (1952).Google Scholar
  423. k.
    Schamp, H. W., and E. Katz: Phys. Rev. 94, 828 (1954).Google Scholar
  424. l.
    Hedvall, J. A., C. Brisi, and R. Lindner: Arkiv Kemi 5, 377 (1952).Google Scholar
  425. m.
    Lindner, R.:J. Chem. Phys. 23, 410 (1955).Google Scholar
  426. n.
    Shim, M. T., and W. J. Moore: J. Chem. Phys. 26, 802 (1957).Google Scholar
  427. o.
    Carter, R. E., and F. D. Richardson: J. Metals 6, 1244 (1954):DCo Co= 2.6 X 10–9 p O2 0.35 cm2/sec (for rOOO°C) and i) 9.0 x 10–9 pm2/sec (for 1150°C).Google Scholar
  428. p.
    Moore, W. J., and B. Selikson:J. Chem. Phys. 19, 1539 (1951)Google Scholar
  429. Moore, W. J., and B. Selikson: J. Chem. Phys. 20, 927 (1952).Google Scholar
  430. q.
    Moore, W. J., Y. Ebisuzaki, and J. A. Sluss: J. Phys. Chem. 62, 1438 (1958).Google Scholar
  431. r.
    Himmel, L., R. F. Mehl, and C. E. Birchenall:J. Metals 5, 827 (1953).Google Scholar
  432. s.
    Lindner, R.:Arkiv Kemi 4, 381 (1952).Google Scholar
  433. t.
    Meussner, R. A., and C. E. Birchenall: Corrosion 13, 677 (1957).Google Scholar
  434. u.
    Hevesy, G. von, and W. Smith: Physik 56, 790 (1929).Google Scholar
  435. v.
    Lindner, R.:Arkiv Kemi 4, 385 (1952).Google Scholar
  436. w.
    Anderson, J. S., and J. R. Richards: J. Chem. Soc. [London) 537 (1946). 5Google Scholar
  437. x.
    Seltzer, M. S., and J. B. Wagner: J. Chem. Phys. 36, 130 (1962).Google Scholar
  438. y.
    Simkovich, G., and J. B. Wagner: J. Chem. Phys. 38, 1368 (1963)Google Scholar
  439. z.
    Mapother, D. E., H. N. Crooks, and R. J. Maurer: J. Chem. Phys. 18, 1231 (1950)Google Scholar
  440. see also A. Murin, and B. Lure: Dokl. Akad. Nauk SSSR 73, 933 (1950).Google Scholar
  441. aa.
    Smith, J. F., and G. C. Danielson: J. Chem. Phys. 22, 266 (1954).Google Scholar
  442. bb.
    Haissinsky, M. M., and D. Peschanski: J. chim. phys. 47, 191 (1950).Google Scholar
  443. cc.
    Lindner, R.:Acta Chem. Scand. 6, 457 (1952).Google Scholar
  444. dd.
    Secco, E. A., and W. J. Moore: J. Chem. Phys. 26, 942 (1957)Google Scholar
  445. ee.
    Lindner, R., and G. D. Parfitt: J. Chem. Phys. 26, 182 (1957).Google Scholar
  446. ff.
    Haul, R., and D. Just: Z. Elektrochem. 62, 1124 (1958).Google Scholar
  447. gg.
    Haul, R., D. Just, and G. Dümbgen: Proc. Fourth Intern. Symp. on the Reactivity of Solids, Amsterdam, 1960, p. 65.Google Scholar
  448. hh.
    Auskern, A. B., and J. Belle: J. Chem. Phys. 28, 171 (1958)Google Scholar
  449. Belle, J., A. B. Auskern, W. A. Bostrom, and F. S. Susko: Proc. Fourth Intern. Symp. on the Reactivity of Solids, Amsterdam, 1960, p. 83.Google Scholar
  450. ii.
    Kingery, W. T..: J. Am. Ceram. Soc. 42, 293 (1959).Google Scholar
  451. jj.
    Wehefritz, V.: Z. physik. Chem. [NF] 26, 339 (1960).Google Scholar

Copyright information

© Plenum Press 1965

Authors and Affiliations

  • Karl Hauffe

There are no affiliations available

Personalised recommendations