Application to Biochemical Systems

  • Leopold May


Most biochemicals contain, essentially, carbon, nitrogen, and oxygen. Some include sulfur, iodine, phosphorus, and metals such as iron, calcium, and sodium. It would be very desirable to study the Mössbauer spectroscopy of the major elemental constituents, but there are conditions that limit the use of a particular nuclide. The low-lying excited state should be less than 150 keV. It is also essential that the energy of recoil be small, which is related inversely to the nuclear mass, requiring high nuclear masses. Also, the source should be readily available to the user. The first two considerations eliminate observations of the Mössbauer effect with hydrogen, carbon, nitrogen, oxygen, sulfur, and phosphorus. However, the Mössbauer spectroscopy of iodine has been applied to inorganic compounds, but not as yet to biochemically important substances such as thyroglobin.


Isomer Shift Biochemical System Porphyrin Ring Internal Magnetic Field Mossbauer Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Marshall, Phys. Med. Biol 13, 15 (1968).CrossRefGoogle Scholar
  2. 2.
    A. Nath, M. Harpold, and M. P. Klein, Chem, Phys. Letters 2, 471 (1968).CrossRefGoogle Scholar
  3. 3.
    G. V. Novikov, L. A. Syrtsova, G. I. Likhtenshtein, V. A. Trukhtanov, V. F. Rachek, and V. I. Gol’danskii, Dokl Akad. Nauk. SSR 181, 1170 (1968) (Russian); Proc, Acad, Sci. USSR, Phys. Chem. Sect. 181, 590 (1968) (English).Google Scholar
  4. 4.
    U. Gonser, R. W. Grant, and J. Kregzde, Science 143, 680 (1964).CrossRefGoogle Scholar
  5. 5.
    G. Lang and W. Marshall, Proc. Phys. Soc. 87, 3 (1966).CrossRefGoogle Scholar
  6. 6.
    W. S. Caughey, W. Y. Fujimoto, A. J. Bearden, and T. H. Moss, Biochemistry 5, 1255 (1966).CrossRefGoogle Scholar
  7. 7.
    L. May and Geraldine M. Hasco, Abstr. No. 124, 156 National Meeting, American Chemical Society, 1968.Google Scholar
  8. 8.
    U. Gonser and R. W. Grant, Biophys. J. 5, 823 (1965).CrossRefGoogle Scholar
  9. 9.
    R. W. Grant, J. A. Cape, U. Gonser, L. E. Topol, and P. Saltman, Biophys. J. 6, 651 (1967).CrossRefGoogle Scholar
  10. 10.
    Federation Proc. 24, Suppl. No. 15 (1965).Google Scholar
  11. 11.
    R. B. Pennell, Federation Proc. 24, Suppl. No. 15, S-269 (1965).Google Scholar
  12. 12.
    R. Cooke and P. Debrunner, J. Chem. Phys. 48, 4532 (1968).CrossRefGoogle Scholar
  13. 13.
    M. Blume, Phys. Rev. Letters 18, 305 (1967).CrossRefGoogle Scholar
  14. 14.
    C. E. Johnson, Phys. Letters 21, 491 (1966).CrossRefGoogle Scholar
  15. 15.
    N. E. Erickson, Advan. Chem. Ser. 68, 86 (1967).CrossRefGoogle Scholar
  16. 16.
    P. George, J. Beetlestone, and J. S. Griffith, in Haematin Enzymes, J. E. Falk, R. Lemberg and R. K. Morton, Eds. (Pergamon, Oxford, 1961), p. 105; Rev. Mod. Phys. 36, 441 (1964).Google Scholar
  17. 17.
    G. Lang, T. Asakura, and T. Yonetani, J. Phys. C 2, 2246 (1969).CrossRefGoogle Scholar
  18. 18.
    L. May, Advan. Chem. Ser. 68, 52 (1967).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Leopold May
    • 1
  1. 1.Department of ChemistryThe Catholic University of AmericaUSA

Personalised recommendations