Advertisement

The Electric Field Gradient Tensor

  • John C. Travis

Abstract

The nuclear portion of the electric quadrupole interaction, along with its application to nuclear physics, was described by Professor Hafemeister in the previous chapter. The importance of the nuclear part, for the purposes of this chapter, is that the extra-nuclear portion, the electric field gradient (EFG) tensor, cannot be extracted from experimental data without prior knowledge of certain nuclear spins and moments. The required information, if known, may be easily located in the Mössbauer Effect Data Index [1], and the use of such information to relate observed splittings to the EFG tensor is illustrated in this chapter. In addition, the following sections describe the prediction of the EFG tensor for an assumed molecular crystal model, special techniques and hints, and the utility of EFG information.

Keywords

Valence Electron Quadrupole Splitting Electric Field Gradient Asymmetry Parameter Ligand Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Muir, Jr., K. J. Ando, Helen M. Coogan, Eds., Mössbauer Effect Data Index 1958–1965 (Interscience Publishers, New York, 1966).Google Scholar
  2. 2.
    R. M. Sternheimer, Phys Rev, 80, 102 (1950); 84, 244 (1951); 130, 1423 (1963);CrossRefGoogle Scholar
  3. H. M. Foley, R. M. Sternheimer, and D. Tycko, ibid. 93, 734 (1954);Google Scholar
  4. R. M. Sternheimer and H. M. Foley, ibid. 102, 731 (1956).Google Scholar
  5. 3.
    R. Ingalls, Phys. Rev. 128, 1155 (1962).CrossRefGoogle Scholar
  6. 4.
    R. M. Sternheimer, Phys. Rev. 130, 1423 (1963).CrossRefGoogle Scholar
  7. 5.
    Michael J. Bielefeld, Semi-empirical Treatment of the Mössbauer Quadrupole Splitting. Research Institute for Natural Sciences, Woodstock College, Woodstock, Maryland, NASA grant NsG-670.Google Scholar
  8. 6.
    P. R. Edwards, C. E. Johnson, and R. J. P. Williams, Chem. Phys. 47, 2074 (1967).Google Scholar
  9. 7.
    R. Ingalls, Phys. Rev. 133, A787 (1964).CrossRefGoogle Scholar
  10. 8.
    J. R. Gabriel and S. L. Ruby, Nucl. Instr. Methods 36, 23 (1965).CrossRefGoogle Scholar
  11. 9.
    G. K. Wertheim, Mössbauer Effect (Academic Press, New York, 1964), p. 80.Google Scholar
  12. 10.
    S. L. Ruby and P. A. Flinn, Rev. Mod. Phys. 36, 351 (1964).CrossRefGoogle Scholar
  13. 11.
    R. L. Collins, J. Chem. Phys. 42, 1072 (1965).CrossRefGoogle Scholar
  14. 12.
    J. C. Travis, Ph.D. thesis. Department of Physics, The University of Texas, Austin, Texas, August, 1967;Google Scholar
  15. R. L. Collins and J. C. Travis, Mössbauer Effect Methodology, Vol. 3, (Plenum Press, New York, 1967), p. 123.Google Scholar
  16. 13.
    S. V. Karyagin, Dokl Akad. Nauk SSSR 148, 1102 (1963) (in Russian);Proc. Acad. Sci. USSR, Phys. Chem. Sec. 148, 110 (1964) (in English).Google Scholar
  17. 14.
    P. A. Flinn, S. L. Ruby, and W. L. Kehl, Scientific Paper 63–128–117, p.6, Westing- house Research Laboratories, Beulah Road, Churchill Borough, Pittsburgh, Pennsylvania.Google Scholar
  18. 15.
    P. Zory, Phys. Rev. 140, A1401 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • John C. Travis
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations