Advertisement

Abstract

During the first decade since the discovery of the Mössbauer effect, instrumentation and techniques have been developed to a high degree of sophistication. The present instrumentation is the result of many innovations by the researchers in this field, and commercial spectrometers now available are based upon their design. Much work has been done in the development of associated equipment to study Mössbauer sources or absorbers at variable temperatures in an applied magnetic field or at high pressures. Procedures for making sources are well documented for many isotopes, and for the more popular isotopes the sources are available commercially. Backscattering techniques have reduced the problem of sample preparation and opened the way for possible commercial applications. However, the time required to obtain a spectrum is still relatively long, even with high-speed counting systems, and the data processing requires a computer, particularly for the more complicated spectra.

Keywords

Gamma Radiation Conversion Electron Michelson Interferometer Mossbauer Spectrum Iron Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Frauenfelder, The Mössbauer Effect (W. A. Benjamin, New York, 1962), Chap. 3.Google Scholar
  2. 2.
    E. Kankeleit, Rev. Sci. Instr. 35, 194 (1964).CrossRefGoogle Scholar
  3. 3.
    F. C. Ruegg, J. J. Spijkerman, and J. R. DeVoe, Rev. Sci. Instr. 36, 356 (1965).CrossRefGoogle Scholar
  4. 4.
    J. R. DeVoe, Ed., NBS Tech. Note No. 248 (1964), p. 29.Google Scholar
  5. 5.
    G. K. Wertheim, Physics Today 20, 31 (1967).CrossRefGoogle Scholar
  6. 6.
    R. Riesenman, J. Steger, and E. Kostiner, Nucl. Instr. Methods 72, 109 (1969).CrossRefGoogle Scholar
  7. 7.
    NBS Misc. Publ. No. 260–13 (1967).Google Scholar
  8. 8.
    J. R. DeVoe, Ed., NBS Tech. Note No. 276 (1966), p. 84.Google Scholar
  9. 9.
    R. Fritz and D. Schulze, Nucl. Instr. Methods 62, 317 (1963).CrossRefGoogle Scholar
  10. 10.
    P. A. Flinn, Rev. Sci. Instr. 34, 1422 (1963).CrossRefGoogle Scholar
  11. 11.
    C. Protop and C. Nistor, Rev. Roum. Phys. 12, 653 (1967).Google Scholar
  12. 12.
    G. K. Wertheim, Mössbauer Effect (Academic Press, New York, 1964), Chap. 4.Google Scholar
  13. 13.
    M. W. Holm, Ed., Debye Characteristic Temperatures Table and Bibliography, U.S. At. Energy Comm. Rept. No. ID-16399 (1957).Google Scholar
  14. 14.
    U. Shimony, Nucl. Instr. Methods 37, 350 (1965).CrossRefGoogle Scholar
  15. 15.
    L. May and D. K. Snediker, Nucl. Instr. Methods 55, 183 (1967).CrossRefGoogle Scholar
  16. 16.
    R. M. Housley, N. E. Erickson, and J. G. Dash, Nucl. Instr. Methods 27, 29 (1964).CrossRefGoogle Scholar
  17. 17.
    R. M. Housley, Nucl. Instr. Methods 35, 77 (1965).CrossRefGoogle Scholar
  18. 18.
    M. Kalvius, Mössbauer Effect Methodology 1, 163 (1965).Google Scholar
  19. 19.
    N. Benczer-Koller and R. H. Herber, in Chemical Applications of Mössbauer Spectroscopy, V. I. Gol’danskii and R. H. Herber, Eds. (Academic Press, New York, 1968), p. 114.Google Scholar
  20. 20.
    J. C. Travis and J. J. Spijkerman, Mössbauer Effect Methodology 4, 237 (1968).Google Scholar
  21. 21.
    W. A. Steyert and M. D. Daybell, Mössbauer Effect Methodology 4, 3 (1968).Google Scholar
  22. 22.
    F. van der Woude and G. Boom, Rev. Sci. Instr. 36, 800 (1965).CrossRefGoogle Scholar
  23. 23.
    B. Sharon and D. Treves, Rev. Sci. Instr. 37, 1252 (1966).CrossRefGoogle Scholar
  24. 24.
    J. R. DeVoe, Ed., NBS Tech. Note No. 501 (1969), p. 7.Google Scholar
  25. 25.
    K. R. Swanson and J. J. Spijkerman, J. Appl. Phys. 41, 3155 (1970).CrossRefGoogle Scholar
  26. 26.
    J. H. Terrell and J. J. Spijkerman, Appl Phys. Letters 13, 11 (1968).CrossRefGoogle Scholar
  27. 27.
    J. R. DeVoe, Ed., NBS Tech. Note No. 501 (1969), p. 17.Google Scholar
  28. 28.
    J. R. Gabriel and S. L. Ruby, Nucl. Instr. Methods 36, 23 (1965).CrossRefGoogle Scholar
  29. 29.
    E. Rhodes, A. Polinger, J. J. Spijkerman, and B. W. Christ, Trans. Met. Soc. AIME 242, 1922 (1968).Google Scholar
  30. 30.
    L. May, S. J. Druck, and Martha Sellers, U.S. At. Energy Comm. Rept. No. NYO-3798–2 (1968).Google Scholar
  31. 31.
    B. L. Chrisman and T. A. Tumolillo, Computer Analysis of Mössbauer Spectra, Dept. of Physics, Univ. of Illinois, Urbana, 111. Available from the Clearing House, U.S. Dept. of Commerce, Springfield, Va. 22151, as Document AD-654 929 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1971

Authors and Affiliations

  • Jon J. Spijkerman
    • 1
  1. 1.National Bureau of StandardsUSA

Personalised recommendations