Somatic Sources of Afferent Input as Factors in Aberrant Autonomic, Sensory and Motor Function

  • J. H. Coote


The control of autonomic effectors and the influence of afferent input on them has received a great deal of attention in the last fifteen years and has been the subject of a number of reviews (Janig, 1975; Koizumi & Brooks, 1972; Sato, 1971, 1975; Sato & Schmidt, 1973; Schmidt, 1974). Many parts of the brain are involved in this control but directly or indirectly they ultimately influence the brainstem and spinal cord wherein lie the cells, the preganglionic motoneurones, whose axons pass out of the central nervous system to synapse with postganglionic neurones in the peripheral ganglia. The preganglionic motoneurone is probably the last site at which any major integration of central and peripheral input occurs. Therefore, to gain a perspective on the influence of somatic afferent inputs I think we can best start by examining the synaptic organisation of the motor nuclei that form the final common pathway out of the central nervous system. In the hope of preventing confusion and for the sake of brevity, I will confine this review to the sympathetic nervous system about which much more is known anyway.


Dorsal Horn Afferent Input Afferent Fibre Sympathetic Preganglionic Neurone Afferent Volley 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAHAMS, V. C., S. M. HILTON, and J. L. MALCOLM. Sensory connections to the hypothalamus and midbrain and their role in the reflex activation of the defence reaction. J. Physiol. 164: 1–16, 1962.PubMedGoogle Scholar
  2. ABRAHAMS, V. C., S. M. HILTON, and A. W. ZBROżYNA. The role of active muscle vasodilatation in the alerting stage of the defence reaction. J. Physiol., London 171:189–202, 1964.Google Scholar
  3. ALEXANDER, R. S. Tonic and reflex function of medullary sympathetic cardiovascular centers. J. Neurophysiol. 9:205–217, 1946.PubMedGoogle Scholar
  4. ASMUSSEN, E., S. JOHANSEN, M. JORGENSEN, and M. NIELSON. On the nervous factors controlling respiration and circulation during exercise. Curarization experiments. Acta Physiol. Scand. 63:343–350, 1965.PubMedGoogle Scholar
  5. ASTROM, A., and J. CRAFOORD. Afferent and efferent activity in renal nerves in cats. Acta Physiol. Scand. 74:69–78, 1968.PubMedGoogle Scholar
  6. BARRON, W., and J. H. COOTE. The contribution of articular receptors to cardiovascular reflexes elicited by passive limb movement. J. Physiol., London 235:423–436, 1973.Google Scholar
  7. BEACHAM, W. S., and D. L. KUNZE. Renal receptors evoking a spinal vasomotor reflex. J. Physiol. 201:73–85, 1969.PubMedGoogle Scholar
  8. BEACHAM, W. S., and E. R. PERL. Background and reflex discharge of sympathetic preganglionic neurones in the spinal cat. J. Physiol. 172:400–416, 1964.PubMedGoogle Scholar
  9. BEACHAM, W. S., and E. R. PERL. Characteristics of a spinal sympathetic reflex. J. Physiol. 173:431–448, 1964.PubMedGoogle Scholar
  10. BILGE, M., T. VELIDEDEOGLU, and M. TERZIOGLU. Variations in respiration induced by passive movements of the hind limbs of the anaesthetized cat. New. Instambal. Contr. Clin. Sci. 6:3–19, 1963.Google Scholar
  11. BOK, S. T. DAS RüCKENMARK. In: Handbuch der mikroscopischen Anatomie des Menschen, edited by W. von Mollendorf. Berlin: Springer, 1928, 4:478–578.Google Scholar
  12. BROWN, A. G. The spinocervical tract: Organisation and neuronal morphology. In: Int. Symp. Sensory functions of the skin in primates, edited by Y. Zotterman. Oxford: Pergamon, 1976, p. 91–103.Google Scholar
  13. BROWN, A. M., and A. MALLIANI. Spinal sympathetic reflexes initiated by coronary receptors. J. Physiol., London 212:685–706, 1971.Google Scholar
  14. BRYAN, R. N., D. L. TREVINO, J. D. COULTER, and W. D. WILLIS. Location and somatotopic organization of the cells of origin of the spinocervical tract. Exptl. Brain Res. 17:177–189, 1973.Google Scholar
  15. CARLSSON, A., B. FALCK, K. FUXE, and N. A. HILLARP. Cellular Localization of monoamines in the spinal cord. Acta Physiol. Scand. 60:112–119, 1964.PubMedGoogle Scholar
  16. CHEN, M. P., R. K. S. LIM, S. C. WANG, and C. L. YI. On the question of a myelincephalic sympathetic centre. IV. Experimental localization of its descending pathway. Chinese J. Physiol. 11:385–408, 1939.Google Scholar
  17. CHUNG, J. M., K. CHUNG, and R. D. WURSTER. Sympathetic preganglionic neurons of the cat spinal cord: horseradish peroxidase study. Brain Res. 91:126–131, 1975.PubMedGoogle Scholar
  18. CHUNG, J. M., and R. D. WURSTER. Localization of ascending depressor pathways in the cat spinal cord. Federation Proc. 34:407, 1975.Google Scholar
  19. CHUNG, J. M., and R. D. WURSTER. Ascending pressor and depressor pathways in the cat spinal cord. Clin. J. Physiol. 231:786–792, 1976.Google Scholar
  20. COMROE, J. H., and C. F. SCHMIDT. Reflexes from the limbs as a factor in the hyperpnoea of muscular exercise. Am. J. Physiol. 138:536–547, 1943.Google Scholar
  21. COOTE, J. H. Properties of spinal autonomic reflex arcs and their comparison with somatic arcs. Ph. D. Thesis. Royal Free Hospital School of Medicine, London, 1964.Google Scholar
  22. COOTE, J. H. Physiological significance of somatic afferent pathways from skeletal muscle and joints with reflex effects on the heart and circulation. Brain Res. 87:139–144, 1975.PubMedGoogle Scholar
  23. COOTE, J. H., and C. B. B. DOWNMAN. Comparison of reflex volleys in white ramus and postganglionic pathways. J. Physiol. 181: 37–38P, 1965.Google Scholar
  24. COOTE, J. H., and C. B. B. DOWNMAN. Central pathways of some autonomic reflex discharges. J. Physiol. 183:714–729, 1966.PubMedGoogle Scholar
  25. COOTE, J. H., and C. B. B. DOWNMAN. Supraspinal control of reflex activity in renal nerves. J. Physiol., London 202:147–160, 1969.Google Scholar
  26. COOTE, J. H., C. B. B. DOWNMAN, and W. V. WEBER. Reflex discharges into thoracic white rami elicited by somatic and visceral afferent excitation. J. Physiol., London 202:147–160, 1969.Google Scholar
  27. COOTE, J. H., S. M. HILTON, and J. F. PEREZ-GONZALEZ. Muscle afferents responsible for the pressor response to exercise. J. Physiol. 201:34–35P, 1969.Google Scholar
  28. COOTE, J. H., S. M. HILTON, and J. F. PEREZ-GONZALEZ. The reflex nature of the pressor response to muscular exercise. J. Physiol., London 215:789–804, 1971.Google Scholar
  29. COOTE, J. H., and V. H. MACLEOD. The possibility that noradrenaline is a sympathoinhibitory transmitter in the spinal cord. J. Physiol., London 225:44–46P, 1972.Google Scholar
  30. COOTE, J. H., and V. H. MACLEOD. The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Physiol., London 241:453–475, 1974.Google Scholar
  31. COOTE, J. H., and V. H. MACLEOD. The spinal route of sympatho-inhibitory pathways descending from the medulla oblongata. Pflügers Arch. 359:335–347, 1975.PubMedGoogle Scholar
  32. COOTE, J. H., and V. H. MACLEOD. The effect of intraspinal microinjections of 6 hydroxydopamine on the inhibitory influence exerted on spinal sympathetic activity by the baroreceptors. Pflügers Aroh. 1977. In press.Google Scholar
  33. COOTE, J. H., and J. F. PEREZ-GONZALEZ. The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol., London 197:25–26P, 1968.Google Scholar
  34. COOTE, J. H., and J. F. PEREZ-GONZALEZ. The response of some sympathetic neurones to volleys in various afferent nerves. J. Physiol., London 208:261–278, 1970.Google Scholar
  35. COOTE, J. H., and A. SATO. A role for a descending sympathoinhibitory pathway in the ventral part of the spinal cord. J. Physiol. 252:21–22P, 1975.Google Scholar
  36. COOTE, J. H., and A. SATO. Supraspinal regulation of spinal reflex discharge into cardiac sympathetic nerves. Brain Res. 1977. In press.Google Scholar
  37. COOTE, J. H., and D. R. WESTBURY. Properties of sympathetic preganglionic neurones located in the third thoracic segment of the spinal cord. J. Physiol. 1977. In press.Google Scholar
  38. CORBETT, J. L., H. L. FRANKEL, and P. J. HARRIS. Cardiovascular changes associated with skeletal muscle spasm in tetraplegic man. J. Physiol. 215:381–393, 1971.PubMedGoogle Scholar
  39. DAHLSTROM, A., and K. FUXE. Evidence for the existence of monoamine neurones in the central nervous system. II. Experimentally induced changes in intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 62. Suppl. 247:5–36, 1965.Google Scholar
  40. DEGROAT, W. C., and R. W. RYALL. An excitatory action of 5 hydroxy-tryptamine on sympathetic preganglionic neurones. Exp. Brain Res. 3:299–305, 1967.Google Scholar
  41. DOROKHOVA, M. I., O. S. MEDVEDEV, Y. A. REZNIKOVA, and V. A. TSYRLIN. Some data on the presence of inhibitory vasomotor control at the spinal level. Biull. Eksp. Biol. Med. 77:3–6, 1974.Google Scholar
  42. EARLE, K. M. The tract of Lissauer and its possible relation to the pain pathway. J. Comp. Neurol. 96:93–111, 1952.PubMedGoogle Scholar
  43. EH, S., and D. HUAN-JI. The descending pathways of the bulbar cardiovascular centre. Acta Physiol. Sinioa. 27:108–114, 1964.Google Scholar
  44. FEDINA, L., A. Y. KATUNSKII, V. M. KHAYUTIN, and A. MITSANYI. Response of renal sympathetic nerves to stimulation of afferent A and C fibres of tibial and mesenterial nerves. Acta Physiol. Acad. Soi. Hung. 29:157–176, 1966.Google Scholar
  45. FERNANDEZ DE MOLENA, A., M. KUNO, and E. R. PERL. Antidromically evoked responses from sympathetic preganglionic neurones. J. Physiol., London 180:321–335, 1965.Google Scholar
  46. FIELDS, H. L., G. A. MEYER, and L. D. PARTRIDGE, Sr. Convergence of visceral and somatic input onto spinal neurons. Expt. Neurol. 26:36–52, 1970.Google Scholar
  47. FIELDS, H. L., L. D. PARTRIDGE, JR., and D. L. WURSTER. Somatic and visceral receptive field properties of fibres in ventral quadrant white matter of the cat spinal cord. J. Neurophysiol. 33:827–837, 1970.PubMedGoogle Scholar
  48. FIELDS, H. L., and D. L. WINTER. Somato visceral pathway: Rapidly conducting fibers in the spinal cord. Science 167:1729–1730, 1970.PubMedGoogle Scholar
  49. FISHER, M. L., and D. O. NUTTER. Cardiovascular reflex adjustments to static muscular contractions in the canine hind limb. Am. J. Physiol. 226:648–655, 1974.PubMedGoogle Scholar
  50. FLANDROIS, R., J. R. LACOUR, J. ISLAS-MAROQUIN, and J. CHARLOT. Essai de mise en evidence d’un stimulus neurogenique articulaire de la ventilation lors de l’exercise musculaire chez le chien. J. Physiol., Paris 58:222–223, 1966.Google Scholar
  51. FLANDROIS, R., J. R. LACOUR, J. ISLAS-MAROQUIN, and J. CHARLOT. Limb mechanoreceptors inducing the reflex hyperpnoea of exercise. Resp. Physiol. 2:335–343, 1967.Google Scholar
  52. FOCK, S., and S. MENSE. Excitatory effects of 5 hydroxytryptamine histamine and potassium ions on muscular group IV afferent units: a comparison with bradykinin. Brain Res. 105:459–469, 1976.PubMedGoogle Scholar
  53. FOREMAN, R. D. Conduction in descending spinal pathways initiated by somato-sympathetic reflexes. Clin. J. Physiol. 228:905–908, 1975.Google Scholar
  54. FOREMAN, R. D., R. F. SCHMIDT, and W. D. WILLIS. Convergence of muscle and cutaneous input onto primate spinothalamic tract neurons. Brain Res. 124:555–560, 1977.PubMedGoogle Scholar
  55. FOREMAN, R. D., and R. D. WURSTER. Localization and functional characteristics of descending sympathetic spinal pathways. Clin. J. Physiol. 225:212–217, 1973.Google Scholar
  56. FOREMAN, R. D., and R. D. WURSTER. Conduction in descending spinal pathways initiated by somato-sympathetic reflexes. Am. J. Physiol. 228:905–908, 1975.PubMedGoogle Scholar
  57. FRANZ, D. N., M. H. EVANS, and E. R. PERL. Characteristics of viscero-sympathetic reflexes in the spinal cat. Am. J. Physiol. 211:1292–1298, 1966.PubMedGoogle Scholar
  58. FRANZ, M., and S. MENSE. Muscle receptors with group IV afferent fibres responding to application of bradykinin. Brain Res. 92:369–383, 1975.PubMedGoogle Scholar
  59. FREEMAN, M. A. R., and B. WYKE. The innervation of the knee joint. An anatomical and histological study in the cat. J. Anat., London 101:505–532, 1967.Google Scholar
  60. FUSSEY, I., C. KIDD, and J. G. WHITWAM. Evoked activity in efferent sympathetic nerves in response to peripheral nerve stimulation in the dog. J. Physiol., London 200:77–78P, 1969.Google Scholar
  61. GAGEL, O. Zur Histologie und Topographie der vegetativen Zentren im Rüchenmark. Z. f. Anat. u Entwicklungsgesch. 85:213–250, 1932.Google Scholar
  62. GEBBER, G. L., and R. B. MCCALL. Identification and discharge patterns of spinal sympathetic interneurons. Am. J. Physiol. 231:722–733, 1976.PubMedGoogle Scholar
  63. GEBBER, G. L., D. G. TAYLOR, and L. C. WEAVER. Electrophysiological studies on organization of central vasopressor pathways. Am. J. Physiol. 224:470–481, 1973.PubMedGoogle Scholar
  64. GILLIAT, R. W., L. GUTTMAN, and D. WHITTERIDGE. Inspiratory vasoconstriction in patients after spinal injuries. J. Physiol. 107:67–75, 1947.Google Scholar
  65. GOOTMAN, P. M., and M. I. COHEN. Evoked splanchnic potentials produced by electrical stimulation of medullary vasomotor regions. Exp. Brain Res. 13:1–14, 1971.Google Scholar
  66. GROSSE, M., and W. JANIG. Vasoconstrictor and pilomotor fibres in skin nerves to the cat’s tail. Pflügers Arch. 361:221–229, 1976.PubMedGoogle Scholar
  67. HENRY, J. L., and F. R. CALARESU. Topography and numerical distribution of neurons of the thoraco-lumbar intermediolateral muscles in the cat. J. Comp. Neurol. 144:205–214, 1972.PubMedGoogle Scholar
  68. HENRY, J. L., and F. R. CALARESU. Responses of single units in the intermediolateral nucleus to stimulation of cardioregulatory medullary nuclei in the cat. Brain Res. 77:314–319, 1974a.Google Scholar
  69. HENRY, J. L., and F. R. CALARESU. Excitatory and inhibitory inputs from medullary nuclei projecting to spinal cardioacceleratory neurons in the cat. Exp. Brain Res. 20:485–504, 1974b.Google Scholar
  70. HENRY, J. L., and F. R. CALARESU. Pathways from medullary nuclei to spinal cardioacceleratory neurons in the cat. Exp. Brain Res. 20, 505–514, 1974c.Google Scholar
  71. HENRY, J. L., and F. R. CALARESU. Origin and course of crossed medullary pathways to spinal sympathetic neurons in the cat. Exp. Brain Res. 20:515–526, 1974d.Google Scholar
  72. HENSEL, H. Neural processes in thermoregulation. Physiol. Rev. 53:948–1017, 1973.Google Scholar
  73. HISS, E., and S. MENSE. Evidence for the existence of different receptor sites for algesic agents at the endings of muscular group IV afferent units. Pflügers Arch. 362:141–146, 1976.PubMedGoogle Scholar
  74. HNIK, P., O. HUDLICKA, J. KUCERA, and R. PAYNE. Activation of muscle afferents by nonproprioceptive stimuli. Am. J. Physiol. 217:1451–1457, 1969.PubMedGoogle Scholar
  75. HOREYSECK, G., and W. JANIG. Reflexes within postganglionic fibres within skin and muscle nerves after mechanical non-noxious stimulation of skin. Exp. Brain Res. 20:115–123, 1974a.Google Scholar
  76. HOREYSECK, G., and W. JANIG. Reflexes in postganglionic fibres within skin and muscle nerves after noxious stimulation of skin. Exp. Brain Res. 20:125–134, 1974b.Google Scholar
  77. HOREYSECK, G., W. JANIG, F. KIRCHNER, and V. THAMER. Activation and inhibition of muscle and cutaneous postganglionic neurones to hindlimb during hypothalamically induced vasoconstriction and atropine sensitive vasodilation. Pflügers Arch. 361: 231–240, 1976.PubMedGoogle Scholar
  78. HONGO, T., E. JANKOWSKA, and A. LUNDBERG. Postsynaptic excitation and inhibition from primary afferents in neurones in the spino-cervical tract. J. Physiol., London 199:569–592, 1968.Google Scholar
  79. HONGO, T., and R. W. HYALL. Electrophysiological and micro-electrophoretic studies on sympathetic preganglionic neurones in the spinal cord. Acta Physiol. Scand. 68:96–104, 1966.Google Scholar
  80. ILLERT, M., and M. GABRIEL. Descending pathways in the cervical cord of cats affecting blood pressure and sympathetic acitivity. Pflügers Arch. 335:109–124, 1972.PubMedGoogle Scholar
  81. ILLERT, M., and H. SELLER. A descending sympatho-inhibitory tract in the ventrolateral column of the cat. Pflügers Arch. 313: 343–360, 1969.PubMedGoogle Scholar
  82. IWAMURA, Y., Y. UCHINO, S. OZAWA, and N. KUDO. Excitatory and inhibitory components of somato-sympathetic reflex. Brain Res. 16:351–358, 1969.PubMedGoogle Scholar
  83. JANIG, W. Central organization of somato-sympathetic reflexes in vasoconstrictor neurones. Brain Res. 87:305–312, 1975.PubMedGoogle Scholar
  84. JANIG, W., and B. RATH. Electrodermal reflexes in the cat’s paws elicited by natural stimulation of skin. Pflügers Arch. 369: 27–32, 1977.PubMedGoogle Scholar
  85. JANIG, W., A. SATO, and R. F. SCHMIDT. Reflexes in postganglionic cutaneous fibres by stimulation of group I to group IV somatic afferents. Pflügers Arch. 331:244–256, 1972.PubMedGoogle Scholar
  86. JANIG, W., and R. F. SCHMIDT. Single unit responses in the cervical sympathetic trunk upon somatic nerve stimulation. Arch. Ges. Physiol. 314:199–216, 1970.Google Scholar
  87. JOHANSSON, B. Circulatory responses to stimulation of somatic afferents. Acta Physiol. Scand. 57. Suppl. 198:1–92, 1962.Google Scholar
  88. JOHANSSON, B., O. JOHSSON, and B. LYUNG. Tonic supraspinal mechanisms influencing the intestino-intestinal inhibitory reflex. Acta Physiol. Scand. 72:200–204, 1968.PubMedGoogle Scholar
  89. JOHANSSON, B., and J. B. LANGSTON. Reflex influence of mesenteric afferents in renal, intestinal and muscle blood flow and on intestinal motility. Acta Physiol. Scand. 61:400–412, 1964.PubMedGoogle Scholar
  90. KAHN, N., and E. MILLS. Centrally evoked sympathetic discharge: a functional study of medullary vasomotor areas. J. Physiol., London 191:339–352, 1967.Google Scholar
  91. KAO, F. F., and L. H. RAY. Respiratory and circulatory responses of anaesthetized dogs to increased muscular work. Am. J. Physiol. 179:249–255, 1954.PubMedGoogle Scholar
  92. KAUFMAN, A., and K. KOIZUMI. Spontaneous and reflex activity of single units in lumbar white rami. In: Research in Physiology. A Liber Memorialis in honor of Professor C. M. Brooks, edited by F. F. Kao, M. Vassalle, and K. Koizumi. Bologna: Aulo Gaggi, 1971, p. 469–481.Google Scholar
  93. KAUFMAN, A., A. SATO, Y. SATO, and H. SUGIMOTO. Reflex changes in heart rate after mechanical and thermal stimulation of the skin at various segmental levels in cats. Neuroscience 2: 103–109, 1977.PubMedGoogle Scholar
  94. KELL, J. F., and E. C. HOFF. Descending spinal pathways mediating pressor responses of cerebral origin. J. Neurophysiol. 15: 229–311, 1952.Google Scholar
  95. KERR, F. W. L. Neuroanatomical substrates of nociception in the spinal cord. Pain 1:325–356, 1975.PubMedGoogle Scholar
  96. KERR, F. W. L., and S. ALEXANDER. Descending autonomic pathways in the spinal cord. Arch. Neurol. Psychiat., Chicago 10:249–261, 1964.Google Scholar
  97. KHAYUTIN, V. M., and E. V. LUKOSHKOVA. Spinal mediation of vasomotor reflexes in animals with intact brain studied by electrophysiological methods. Pflügers Arch. 321:197–222, 1970.PubMedGoogle Scholar
  98. KIRCHNER, F., A. SATO, and H. WEIDINGER. Central pathways of reflex discharges in the cervical sympathetic trunk. Pflügers Arch. 319:1–11, 1970.PubMedGoogle Scholar
  99. KIRCHNER, F., A. SATO., and H. WEIDINGER. Bulbar inhibition of spinal and supraspinal sympathetic reflex discharges. Pflügers Arch. 326:324–333, 1971.PubMedGoogle Scholar
  100. KIRCHNER, F., I. WYSZOGRODSKI, and C. POLOSA. Some properties of sympathetic neuron inhibition by depressor area and intraspinal stimulation. Pflügers Arch. 357:349–360, 1975.PubMedGoogle Scholar
  101. KNIFFKI, K. D., S. MENSE, and R. F. SCHMIDT. Mechanisms of muscle pain: a comparison with cutaneous nociception. In: Sensory Functions of the Skin, edited by Y. Zotterman. Oxford: Pergamon, 1976, 27:463–473.Google Scholar
  102. KOIZUMI, K., and C. M. BROOKS. The integration of autonomic system reactions: A discussion of autonomic reflexes, their control and their association with somatic reaction. Ergeb der Physiol. 67:1–68, 1972.Google Scholar
  103. KOIZUMI, K., R. KOLLIN, A. KAUFMAN, and C. M. BROOKS. Contribution of unmyelinated afferent excitation to sympathetic reflexes. Brain Res. 20:99–106, 1970.PubMedGoogle Scholar
  104. KOIZUMI, K., and A. SATO. Reflex activity of single sympathetic fibres to skeletal muscle produced by electrical stimulation of somatic and vagodepressor afferent nerves. Pflügers Arch. 332:283–301, 1972.PubMedGoogle Scholar
  105. KOIZUMI, K., H. SELLER, A. KAUFMAN, and C. M. BROOKS. Pattern of sympathetic discharges and their relation to baroreceptor and respiratory activities. Brain Res. 27:281–294, 1971.PubMedGoogle Scholar
  106. KOIZUMI, K., and I. SUDA. Induced modulations in autonomic efferent neuron activity. Am. J. Physiol. 205:738–744, 1963.PubMedGoogle Scholar
  107. KONISHI, M. Fluorescence microscopy of the spinal cord of the dog with special reference to the autonomic lateral horn cells. Arch. Histol. Jap. 30:33–44, 1968.PubMedGoogle Scholar
  108. KUMAZAWA, T., and K. MIZUMURA. The polymodal C-fibre receptor in the muscle of the dog. Brain Res. 101:589–593, 1976.PubMedGoogle Scholar
  109. KUMAZAWA, T., and E. R. PERL. Differential excitation of dorsal horn and substantia gelatinosa marginal neurons by primary afferent units with fine (Aδ and C) fibers. In Int. Symp. : Sensory Functions of the Skin in Primates, edited by Y. Zotterman. Oxford: Pergamon, 1976, p. 67–87.Google Scholar
  110. KURU, M. Nervous control of micturition. Physiol. Rev. 45:425–494, 1965.PubMedGoogle Scholar
  111. LANGLEY, J. N. On the course and connections of the secretory fibers supplying the sweat glands of the feet of the cat. J. Physiol., London 12:347–374, 1891.Google Scholar
  112. LANGLEY, J. N. Further observations on the secretory and vasomotor fibers of the foot of the cat. J. Physiol., London 17:296–314, 1894–5.Google Scholar
  113. LARUELLE, L. Contribution a l’étude du nevrexe vegetatif. Comp. Rend. Assoc. Anat. 31:210–229, 1936.Google Scholar
  114. LEBEDEV, V. P., V. I. PETROV, and V. A. SKOBELEV. Antidromic discharges of sympathetic preganglionic neurons located outside of the spinal cord lateral horns. Neuroscience Letters 2: 325–329, 1976a.Google Scholar
  115. LEBEDEV, V. P., N. N. ROSANOV, V. A. SKOBELEV, and K. A. SMIRNOV. Study of the early somato-sympathetic reflex response. Neuroscience Letters 2:319–323, 1976b.Google Scholar
  116. LIPSKI, J., and A. TRZEBSKI. Bulbospinal neurones activated by baroreceptor afferents and their possible role in inhibition of preganglionic sympathetic neurons. Pflügers Arch. 356: 181–192, 1975.PubMedGoogle Scholar
  117. LOEWY, A. D., J. C. ARAUJO, and F. W. L. KERR. Pupillodilator pathway in the brainstem of the cat : Anatomical and electrophysiological identification of a central autonomic pathway. Brain Res. 60:65–91, 1973.PubMedGoogle Scholar
  118. MALLIANI, A., M. PAGANI, G. RECORDATI, and P. J. SCHWARTZ. Evidence for spinal sympathetic regulation of cardiovascular functions. Experientia 26:965–966, 1970.PubMedGoogle Scholar
  119. MALLIANI, A., M. PAGANI, G. RECORDATI, and P. J. SCHWARTZ. Spinal sympathetic reflexes elicited by increases in arterial blood pressure. Am. J. Physiol. 220:128–134, 1971.PubMedGoogle Scholar
  120. MALLIANI, A., D. F. PETERSON, V. S. BISHOP, and A. M. BROWN. Spinal sympathetic cardiocardiac reflexes. Circ. Res. 30: 158–166, 1972.PubMedGoogle Scholar
  121. MALLIANI, A., P. J. SCHWARTZ, and A. ZANCHETTI. A sympathetic reflex elicited by experimental coronary occlusion. Am. J. Physiol. 217:703–709, 1969.PubMedGoogle Scholar
  122. MANNARD, A., P. RAJCHGOT, and C. POLOSA. Effect of post impulse depression on background firing of sympathetic preganglionic neurons. Brain Res. 126:243–262, 1977.PubMedGoogle Scholar
  123. MCCLOSKEY, D. I., and J. H. MITCHELL. Reflex carciovascular and respiratory responses originating on exercising muscle. J. Physiol., London 224:173–186, 1972.Google Scholar
  124. MENSE, S., and R. F. SCHMIDT. Activation of group IV afferent units from muscle by algesic agents. Brain Res. 72:305–310, 1974.PubMedGoogle Scholar
  125. MITCHELL, J. H., D. S. MIERZWIAK, K. WILDENTHAL, W. D. WILLIS, and A. M. SMITH. Effect on left ventricular performance of stimulation of an afferent nerve from muscle. Ciro. Res. 32:507–516, 1968.Google Scholar
  126. MIZUMURA, K., and T. KUMAZAWA. Reflex respiratory response induced by chemical stimulation of muscle afferents. Brain Res. 109: 402–406, 1976.PubMedGoogle Scholar
  127. NEUMAYR, R. J., B. D. HARE, and D. N. FRANZ. Evidence for bulbospinal control of sympathetic preganglionic neurons by mono-aminergic pathways. Life Sci. 14:793–806, 1974.PubMedGoogle Scholar
  128. NYBERG-HANSEN, R. J. Sites and mode of termination of reticulospinal fibers in the cat. J. Comp. Neurol. 124:71–99, 1965.PubMedGoogle Scholar
  129. PAGANI, M., P. J. SCHWARTZ, R. BANKS, F. LOMBARDI, and A. MALLIANI. Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 68:215–225, 1974.PubMedGoogle Scholar
  130. PATTON, H. D. Secretory innervation of the cat’s foot pad. J. Neurophysiol. 11:211–227, 1948.Google Scholar
  131. PEREZ-GONZALEZ, J. F., and J. H. COOTE. Activity of muscle afferents and reflex circulatory responses to exercise. Am. J. Physiol. 223:138–143, 1972.PubMedGoogle Scholar
  132. PETRAS, J. M., and J. F. CUMMINGS. Autonomic neurons in the spinal cord of the rhesus monkey: A correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J. Comp. Neurol. 146:189–218, 1972.PubMedGoogle Scholar
  133. PICK, J. The Autonomic Nervous System. Philadelphia: Lippincott, 1970.Google Scholar
  134. POLJACK, S. Die Struktureigentümlichkeiten des Ruckermarkes beiden Chiropteren. Zugleich ein Beitrag zu der Frage über die spinalen Zentren des Sympatheticus. Z. J. Anat. U. Entwicklungsgesch. 74:509–576, 1924.Google Scholar
  135. POLOSA, C. Silent period of sympathetic preganglionic neurons. Can. J. Physiol. Pharmacol. 45:1033–1045, 1967.PubMedGoogle Scholar
  136. POMERANZ, B., P. D. WALL, and W. V. WEBER. Cord cells responding to fine myelinated afferents from viscera, muscle and skin. J. Physiol., London 199:511–532, 1968.Google Scholar
  137. PROUT, B. J., J. H. COOTE, and C. B. B. DOWNMAN. Supraspinal inhibition of a cutaneous vascular reflex in the cat. Am. J. Physiol. 207:303–307, 1964.PubMedGoogle Scholar
  138. RAMSAY, A. G. Muscle metabolism and the regulation of breathing. J. Physiol., London 127, 30P, 1955.Google Scholar
  139. RAMSAY, A. G. Effect of metabolism and anaesthesia on pulmonary ventilation. J. Appl. Physiol. 14:102–104, 1959.PubMedGoogle Scholar
  140. RANSON, S. W. The course within the spinal cord of the non-medullated fibers of the spinal dorsal roots: a study of Lissauer’s tract in the cat. J. Comp. Neurol. 23:259–274, 1913.Google Scholar
  141. RANSON, S. W., and P. R. BILLINGSLEY. Afferent spinal paths and the vasomotor reflexes. Studies in vasomotor reflex arcs VI. Am. J. Physiol. 42:16–35, 1916.Google Scholar
  142. RETHELYI, M. Cell and neuropil architecture of the intermedio-lateral (sympathetic) nucleus of cat spinal cord. Brain Res. 46:203–213, 1972.PubMedGoogle Scholar
  143. RETHELYI, M. Spinal transmission of autonomic processes. J. Neural Trans. Suppl. XI:195–212, 1974.Google Scholar
  144. RIEDEL, W., M. IRIKI, and E. SIMON. Regional differentiation of sympathetic activity during peripheral heating and cooling in anaesthetized rabbits. Pflügers Arch. 332:239–247, 1972.PubMedGoogle Scholar
  145. SATO, A. The spinal and supraspinal somato-sympathetic reflexes. In: Research in Physiology. A Liber Memorialis in honor of Professor Chandler McC. Brooks, edited by F. F. Kao, K. Koizumi, and M. Vasalle. Bologna: Aulo Gaggi, 1971, p. 507–516.Google Scholar
  146. SATO, A. Somato-sympathetic reflex discharges evoked through supramedullary pathways. Pflügers Arch. 332:117–126, 1972a.Google Scholar
  147. SATO, A. The relative involvement of different reflex pathways in somato-sympathetic reflexes, analyzed in spontaneously active single preganglionic sympathetic units. Pflügers Arch. 333: 70–81, 1972b.Google Scholar
  148. SATO, A. Spinal and supraspinal inhibition of somato-sympathetic reflexes by conditioning afferent volleys. Pflügers Arch. 336:121–133, 1972c.Google Scholar
  149. SATO, A. Spinal and medullary reflex components of the somatosympathetic reflex discharges evoked by stimulation of group IV somatic afferents. Brain Res. 51:307–318, 1973.PubMedGoogle Scholar
  150. SATO, A. Somato-sympathetic reflexes: Their physiological and clinical significance. In: The Research Status of Spinal Manipulative Therapy, edited by M. Goldstein. NINCDS Monograph 15:163–172, 1975.Google Scholar
  151. SATO, A., A. KAUFMAN, K. KOIZUMI, and C. M. BROOKS. Afferent nerve groups and sympathetic reflex pathways. Brain Res. 14:575–587, 1969.PubMedGoogle Scholar
  152. SATO, A., N. SATO, I. OZAWA, and B. FUJIMORI. Further observation of the reflex potential in the lumbar sympathetic trunk. Jap. J. Physiol. 17:294–307, 1967.Google Scholar
  153. SATO, A., Y. SATO, F. SHIMADA, and Y. TORIGATA. Changes in gastric motility produced by nociceptive stimulation of the skin in rats. Brain Res. 94:465–474, 1975.PubMedGoogle Scholar
  154. SATO, A., Y. SATO, F. SHIMADA, and Y. TORIGATA. Varying changes in heart rate produced by nociceptive stimulation of the skin of rats at different temperatures. Brain Res. 110:301–311, 1976.PubMedGoogle Scholar
  155. SATO, A., Y. SATO, H. SUGIMOTO, and N. TERUI. Reflex changes in the urinary bladder after mechanical and thermal stimulation of the skin at various segmental levels in cats, Neuroscience 2:111–117, 1977.PubMedGoogle Scholar
  156. SATO, A., and R. F. SCHMIDT. Muscle and cutaneous afferents evoking sympathetic reflexes. Brain Res. 2:399–401, 1966.PubMedGoogle Scholar
  157. SATO, A., and R. F. SCHMIDT. Spinal and supraspinal components of the reflex discharges into lumbar and thoracic white rami. J. Physiol., London 212:839–850, 1971.Google Scholar
  158. SATO, A., and R. F. SCHMIDT. Somato-sympathetic reflexes: Afferent fibres, central pathways, discharge characteristics. Physiol. Rev. 53:916–947, 1973.Google Scholar
  159. SATO, Y., and N. TERUI. Changes in duodenal motility produced by noxious mechanical stimulation of the skin in rats, Neuroscience Letters 2:189–193, 1976.PubMedGoogle Scholar
  160. SATO, A., N. TSUSHIMA, and B. FUJIMORI. Reflex potentials of lumbar sympathetic trunk with sciatic nerve stimulation in cats. Jap. J. Physiol. 15:532–539, 1965.Google Scholar
  161. SCHERRER, H. Inhibition of sympathetic discharge by stimulation of the medulla oblongata in the rat. Acta Neuroveg., Wien 29:56–74, 1966.Google Scholar
  162. SCHIEBEL, M. E., and A. B. SCHIEBEL. Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res. 9:32–58, 1968.Google Scholar
  163. SCHIMERT, J. Das Verhalten des Huiterwurzelkol lateraless im Rückenmark. Z. Anat. Entwickl-Gesch 109:665–687, 1939.Google Scholar
  164. SCHMIDT, R. F. Pre- and postganglionic neurones as final common path of somato-sympathetic reflexes. In: Central Rhythmic Regulation, edited by W. Umbach, and H. P. Koepchen. Stuttgart: Hippokrates-Verlag, 1974, p. 178–190.Google Scholar
  165. SCHMIDT, R. F., and K. SCHöNFUSS. An analysis of the reflex activity in the cervical sympathetic trunk induced by myelinated somatic afferents. Pflügers Arch. 314:175–198, 1970.PubMedGoogle Scholar
  166. SCHMIDT, R. F., and E. WELLER. Reflex activity in the cervical and lumbar sympathetic trunk induced by unmyelinated afferents. Brain Res. 24:207–218, 1970.PubMedGoogle Scholar
  167. SELL, R., A. ERDELYI, and H. SCHAEFER. Untersuchungen über den Eifluss peripherer Nerven reizung auf die sympathische Activitat. Pflügers Arch. 267:566–581, 1958.PubMedGoogle Scholar
  168. SELLER, H. The discharge pattern of single units in thoracic and lumbar white rami in relation to cardiovascular events. Pflügers Arch. 343:317–330, 1973.PubMedGoogle Scholar
  169. SELZER, M., and W. A. SPENCER. Interactions between visceral and cutaneous afferents in the spinal cord: reciprocal primary afferent fiber depolarization. Brain Res. 14:349–366, 1969.PubMedGoogle Scholar
  170. SENAPATI, J. M. Effect of stimulation of muscle afferent on ventilation in dogs. J. Appl. Physiol. 21:242–246, 1966.PubMedGoogle Scholar
  171. SMITH, O. A. Anatomy of central neural pathways mediating cardiovascular functions. In: Nervous Control of the Heart, edited by W. C. Randall. Baltimore: Williams & Wilkins, 1965, p. 34–53.Google Scholar
  172. STACEY, M. J. Free nerve endings in skeletal muscle of the cat. J. Anat., London 105:231–254, 1969.Google Scholar
  173. STEGEMANN, J., and TH. KENNER. A theory of heart rate control by muscle metabolic receptors. Arch. Kreisl. Forsch. 64:185–214, 1971.Google Scholar
  174. SZENTáGOTHAI, J. Anatomical considerations of monosynaptic reflex arcs. J. Neurophysiol. 11:445–454, 1948.PubMedGoogle Scholar
  175. SZENTáGOTHAI, J. Neuronal and synaptic arrangements in the substantia gelatinosa Rolandi. J. Comp. Neurol. 122:219–240, 1964.PubMedGoogle Scholar
  176. SZENTáGOTHAI, J., and M. RETHELYI. Cyto- and neuropil architecture of the spinal cord. In: New Developments in Electromyography and Clinical Neurophysiology, edited by J. E. Desmedt. Basel: Karger, Vol. 3, 1973, p. 20–37.Google Scholar
  177. TIBES, U., and H. H. GROTH. Effect of K+, osmolality (OSM) ortho-phosphate (Pi), lactic acid (Lac) and adrenaline on C-fiber receptors in skeletal muscle. Proc. IUPS, Paris XIII, 2241, 1977.Google Scholar
  178. TIBES, U., and B. HEMMER. Peripheral drive on circulatory and ventilatory centers from muscle metabolic receptors. Pflügers Arch. 347:R47, 1974.Google Scholar
  179. TIBES, U., B. HEMMER, and D. BöNING. Heart rate and ventilation in relation to venous (K+), osmolality, pA, PCO2, PO2 (orthophosphate), and lactate at transition from rest to exercise in athletes and non-athletes. Europ. J. Appl. Physiol. 36:127–140, 1977.Google Scholar
  180. UCHIZANO, K. Excitation and Inhibition. Synaptic Morphology. Tokyo: Igaku Shoin, 1975.Google Scholar
  181. WANG, G. H. The Neural Control of Sweating. Madison: University of Wisconsin Press, 1964.Google Scholar
  182. WANG, G. H., and V. W. BROWN. Changes in galvanic skin reflex after acute spinal transection in normal and decerebrate cats. J. Neurophysiol. 19:446–451, 1956a.Google Scholar
  183. WANG, G. H., and V. W. BROWN. Suprasegmental inhibition of an autonomic reflex. J. Neurophysiol. 19:564–572, 1956b.Google Scholar
  184. WANG, G. H., P. STEIN, and V. W. BROWN. Effects of transections of central neuraxis on galvanic skin reflex in anaesthetized cats. J. Neurophysiol. 19:340–349, 1956.PubMedGoogle Scholar
  185. WANG, S. C., and S. W. RANSON. Descending pathways from the hypothalamus to the medulla and spinal cord. Observations on blood pressure and bladder responses. J. Comp. Neurol. 71: 457–472, 1939.Google Scholar
  186. WILDENTHAL, K., D. S. MIERZWIAK, N. SHELDON-SKINNER, and J. H. MITCHELL. Potassium induced cardiovascular and ventilatory reflexes from the dog hind limb. Am. J. Physiol. 215:542–548, 1968.PubMedGoogle Scholar
  187. WURSTER, R. D. Spinal sympathetic control of the heart. In: Neural Regulation of the Heart, edited by W. C. Randall. Oxford: Oxford University Press, 1977, p. 213–246.Google Scholar
  188. WYSZOGRODSKI, I., and C. POLOSA. The inhibition of sympathetic preganglionic neurons by somatic afferents. Can. J. Physiol. Pharmacol. 51:29–38, 1973.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • J. H. Coote
    • 1
  1. 1.Department of Physiology, The Medical School, University of BirminghamEngland

Personalised recommendations