Advertisement

Transfer of Information from Effector Organs to Innervating Neurons by Retrograde Axonal Transport of Macromolecules

  • H. Thoenen
  • M. Schwab
  • Y.-A. Barde

Abstract

The functional capacity of integrated neuronal systems such as the human brain depends not only on the numerous synaptic contacts between their neurons, but also on the capability of these neurons to adapt their synaptic connectivity in response to changing functional requirements. This ability to undergo plastic adaptations represents a basic difference between the function of an integrated neuronal system and that of a computer. Thus, if a nerve impulse is transmitted from one neuron to the other by means of transmitter substances the response of the effector neuron is not confined to the short-term effects such as changes in the ionic permeability of the neuronal membrane. The response also involves changes in the macromolecular composition of the effector cell which may be reflected by covalent alterations of macromolecules, e.g., phosphorylation, or by changes in the rate of synthesis of macromolecules which directly or indirectly change the functional connection between neurons (cf. Cragg, 1970; Thoenen & Otten, 1976).

Keywords

Nerve Growth Factor Tyrosine Hydroxylase Nerve Terminal Sympathetic Ganglion Superior Cervical Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BANERJEE, S. P., P. CUATRECASAS, and S. H. SNYDER. Solubilization of nerve growth factor receptors of rabbit superior cervical ganglia. J. Biol. Chem. 251:5680–5685, 1976.PubMedGoogle Scholar
  2. BIZZINI, B., K. STOECKEL, and M. E. SCHWAB An antigenic polypeptide fragment isolated from tetanus toxin: Chemical characterization, binding to gangliosides and retrograde axonal transport in various neuron systems. J. Neurochem. 28:529–542, 1977.PubMedCrossRefGoogle Scholar
  3. BJOERKLUND, A., B. BJERRE, and U. STENEVI. Has nerve growth factor a role in the regeneration of central and peripheral catecholamine neurons? In: Dynamics of Degeneration and Growth in Neurons, edited by K. Fuxe, L. Olson, and Y. Zotterman. New York: Pergamon Press, 1974, pp. 389–409.Google Scholar
  4. BLINZINGER, K., and A. P. ANZIL. Neuronal route of infection in viral diseases of the central nervous system. Lancet 7: 1374–1377, 1974.CrossRefGoogle Scholar
  5. BURNSTOCK, G. Degeneration and orientation of growth of autonomic nerves in relation to smooth muscle in joint tissue cultures and anterior eye chamber transplants. In: Dynamics of Degeneration and Growth in Neurons, edited by K. Fuxe, L. Olson, and Y. Zotterman. New York: Pergamon Press, 1974, pp. 509–520.Google Scholar
  6. CARSTAIRS, J. R., R. C. EDWARDS, F. L. PEARCE, C. A. VERNON, and S. J. WALTER. Immunogenic contaminants in mouse nerve growth factor. Eur. J. Biochem. 77:311–317, 1977.PubMedCrossRefGoogle Scholar
  7. CRAGG, B. G. What is the signal for chromatolysis? Brain Res. 23:1–21, 1970.PubMedCrossRefGoogle Scholar
  8. CURTIS, D. R., and W. C. DEGROAT. Tetanus toxin and spinal inhibition. Brain Res. 10:208–212, 1968.PubMedCrossRefGoogle Scholar
  9. CURTIS, D. R., D. FELIX, C.J.A. GAME, and R. M. McCULLOCH. Tetanus toxin and the synaptic release of GABA. Brain Res. 51:358–362, 1973.PubMedCrossRefGoogle Scholar
  10. FILLENZ, M., C. GAGNON, K. STOECKEL, and H. THOENEN. Selective uptake and retrograde axonal transport of dopamine β-hydroxylase antibodies in peripheral adrenergic neurons. Brain Res. 114:293–303, 1976.PubMedCrossRefGoogle Scholar
  11. FRAZIER, W. A., C. E. OHLENDORF, L. F. BOYD, L. ALOE, E. M. JOHNSON, J. A. FERRENDELL, and R. A. BRADSHAW. Mechanism of action of nerve growth factor and cyclic AMP on neurite outgrowth in embryonic chick sensory ganglia: Demonstration of independent pathways of stimulation. Proc. Natl. Acad. Sci. US 70:2448–2452, 1973.CrossRefGoogle Scholar
  12. HAMBURGER, V. The effects of wing bud extirpation on the development of the central nervous system in chick embryos. J. Exptl. Biol. 68:449–494, 1938.Google Scholar
  13. HENDRY, I. A. Developmental changes in tissue and plasma concentrations of the biologically active species of nerve growth factor in the mouse by using a two-site radioimmunoassay. Biochem. J. 128:1265–1272, 1972.PubMedGoogle Scholar
  14. HENDRY, I. A. The response of adrenergic neurons to axotomy and nerve growth factor. Brain Res. 94:87–97, 1975.PubMedCrossRefGoogle Scholar
  15. HENDRY, I. A. Control in the development of the vertebrate sympathetic nervous system. In: Reviews of Neuroscience. New York: Raven Press, 1976, vol. 2, pp. 149–194.Google Scholar
  16. HENDRY, I. A., and J. CAMPBELL. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J. Neurocytol. 5:351–360, 1976.PubMedCrossRefGoogle Scholar
  17. HENDRY, I. A., and L. L. IVERSEN. Reduction in the concentration of nerve growth factor in mice after sialectomy and castration. Nature 243:500–504, 1973.CrossRefGoogle Scholar
  18. HENDRY, I. A., K. STOECKEL, H. THOENEN, and L. L. IVERSEN. The retrograde axonal transport of nerve growth factor. Brain Res. 68:103–121, 1974.PubMedCrossRefGoogle Scholar
  19. HERRUP, K., R. STICKGOLD, and E. M. SHOOTER. The role of the nerve growth factor in the development of sensory and sympathetic ganglion. Ann. N. Y. Acad. Sci. 228:381–392, 1974.PubMedCrossRefGoogle Scholar
  20. HEYNINGEN, W. E. VAN. Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature 249: 415–417, 1974.CrossRefGoogle Scholar
  21. HOGUE-ANGELETTI, R. Nerve growth factor (NGF) from snake venom and mouse submaxillary gland: Interaction with serum proteins. Brain Res. 12:234–247, 1969.CrossRefGoogle Scholar
  22. IVERSEN, L. L., K. STOECKEL, and H. THOENEN. Autoradiographic studies of the retrograde axonal transport of nerve growth factor in mouse sympathetic neurons. Brain Res. 88:37–43, 1975.PubMedCrossRefGoogle Scholar
  23. JOHNSON, R. G., R. GORDEN, and I. J. KOPIN. A sensitive radioimmunoassay for 7S nerve growth factor antigens in serum and tissues. J. Neurochem. 18:2355–2362, 1971.PubMedCrossRefGoogle Scholar
  24. KRISTENSSON, K., B. GEHTTI, and H. M. WISNIEWSKI. Study of the propagation of herpes simplex virus (type 2) into the brain after intraocular injection. Brain Res. 69:189–202, 1974.PubMedCrossRefGoogle Scholar
  25. LEVI-MONTALCINI, R., L. ALOE, E. MUGNAINI, F. OESCH, and H. THOENEN. Nerve growth factor induces volume increase and enhances tyrosine hydroxylase synthesis in chemically axotomized sympathetic ganglia of newborn rats. Proc. Natl. Acad. Sci. US 72:595–599, 1975.CrossRefGoogle Scholar
  26. LEVI-MONTALCINI, R., and P. U. ANGELETTI. Nerve growth factor. Physiol. Rev. 48:534–569, 1968.PubMedGoogle Scholar
  27. MURPHY, F. A., S. P. BAUER, A. K. HARRISON, and W. C. WINN, JR. Comparative pathogenesis of rabies and rabies-like viruses. Viral infection and transit from inoculation site to the central nervous system. Lab. Invest. 28:361–376, 1973.PubMedGoogle Scholar
  28. MURPHY, R. A., N. Z. PANTAZIS, B.G.W. ARNASON, and M. YOUNG. Secretion of a nerve growth factor by mouse neuroblastoma cells in culture. Proc. Natl. Acad. Sci. US 72:1895–1898, 1975.CrossRefGoogle Scholar
  29. OLSON, L., and T. MALMFORS. Growth characteristics of adrenergic nerves in the adult rat. Acta Physiol. Scand. Suppl. 348:1–112, 1970.PubMedGoogle Scholar
  30. OSBORNE, R. H., and H. F. BRADFORD. Tetanus toxin inhibits amino acid release from nerve endings in vitro. Nature New Biol. 244:157–158, 1973.PubMedGoogle Scholar
  31. OTTEN, U., M. GOEDERT, and H. THOENEN. Role of nerve growth factor for development and maintenance of function of sympathetic neurons and adrenal medullary cells. In: Proc. Satellite Symp. Inter. Soc. Neurochem., Saint-Vincent, Italy. Basel: Karger S. A., 1977, in press.Google Scholar
  32. OTTEN, U., M. SCHWAB, C. GAGNON, and H. THOENEN. Selective induction of tyrosine hydroxylase and dopamine β-hydroxylase by nerve growth factor: Comparison between adrenal medulla and sympathetic ganglia of adult and newborn rats. Brain Res. 133:291–303, 1977.PubMedCrossRefGoogle Scholar
  33. PARAVICINI, U., K. STOECKEL, and H. THOENEN. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Res. 84:279–291, 1975.PubMedCrossRefGoogle Scholar
  34. PRICE, R. W., B. J. KATZ, and A. L. NOTKINS. Latent infection of the peripheral ANS with herpes simplex virus. Nature 251:686–688, 1975.CrossRefGoogle Scholar
  35. PURVES, D. Functional and structural changes in mammalian sympathetic neurones following interruption of their axons. J. Physiol. 252:429–463, 1975.PubMedGoogle Scholar
  36. PURVES, D. Functional and structural changes in mammalian sympathetic neurones following colchicine application to postganglionic nerves. J. Physiol. 259:159–175, 1976.PubMedGoogle Scholar
  37. PURVES, D., and A. NJA. Effect of nerve growth factor on synaptic depression after axotomy. Nature 260:535–536, 1976.PubMedCrossRefGoogle Scholar
  38. SCHWAB, M. E. Ultrastructural localization of a nerve growth factor — horseradish peroxidase (NGF-HRP) coupling product after retrograde axonal transport in adrenergic neurons. Brain Res. 130:190–196, 1977.PubMedCrossRefGoogle Scholar
  39. SCHWAB, M. E., and H. THOENEN. Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: An autoradiographic and morphometric study. Brain Res. 105:213–227, 1976.PubMedCrossRefGoogle Scholar
  40. SCHWAB, M. E., and H. THOENEN. Selective transsynaptic migration of tetanus toxin after retrograde axonal transport in peripheral sympathetic nerves: A comparison with nerve growth factor. Brain Res. 122:459–474, 1977a.CrossRefGoogle Scholar
  41. SCHWAB, M. E., and H. THOENEN. Selective binding, uptake and retrograde transport of tetanus toxin by nerve terminals in the rat iris. J. Cell Biol. 1977b, in press.Google Scholar
  42. STOECKEL, K., G. GUROFF, M. SCHWAB, and H. THOENEN. The significance of retrograde axonal transport for the accumulation of systemically administered nerve growth factor (NGF) in the rat superior cervical ganglion. Brain Res. 109:271–284, 1976.PubMedCrossRefGoogle Scholar
  43. STOECKEL, K., U. PARAVICINI, and H. THOENEN. Specificity of the retrograde axonal transport of nerve growth factor. Brain Res. 76:413–421, 1974.CrossRefGoogle Scholar
  44. STOECKEL, K., M. SCHWAB, and H. THOENEN. Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: A biochemical and morphological study. Brain Res. 89:1–14, 1975a.PubMedCrossRefGoogle Scholar
  45. STOECKEL, K., M. SCHWAB, and H. THOENEN. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99:1–16, 1975b.CrossRefGoogle Scholar
  46. STOECKEL, K., M. E. SCHWAB, and H. THOENEN. Role of gangliosides in the uptake and retrograde axonal transport of cholera and tetanus toxin as compared to nerve growth factor and wheat germ agglutinin. Brain Res. 132:273–285, 1977.PubMedCrossRefGoogle Scholar
  47. STOECKEL, K., AND H. THOENEN. Specificity and biological importance of retrograde axonal transport of nerve growth factor. In: Proc. Sixth Inter. Congr. Pharm., Helsinki, Finland, edited by J. Tuomisto and M. K. Paasonen. New York: Pergamon Press, 1975, vol. II, pp. 285–296.Google Scholar
  48. THOENEN, H., P. U. ANGELETTI, R. LEVI-MONTALCINI, and R. KETTLER. Selective induction of tyrosine hydroxylase and dopamine β-hydroxylase in the rat superior cervical ganglia by nerve growth factor. Proc. Natl. Acad. Sci. US 68:1598–1602, 1971.CrossRefGoogle Scholar
  49. THOENEN, H., and U. OTTEN. Molecular events in transsynaptic regulation of the synthesis of macromolecules. In: Essays in Neurochemistry and Neuropharmacology, edited by M.B.H. Youdim, W. Lovenberg, D. F. Sharman, and J. R. Lagnado. New York: J. Wiley & Sons Ltd., 1976, vol. 1, pp. 73–101.Google Scholar
  50. THOENEN, H., U. OTTEN, and F. OESCH. Axoplasmic transport of enzymes involved in the synthesis of noradrenaline: Relationship between the rate of the transport and subcellular distribution. Brain Res. 62:471–475, 1973.PubMedCrossRefGoogle Scholar
  51. WALZ, M. A., R. W. PRICE, and A. L. NOTKINS. Latent ganglionic infection with herpes simplex virus types 1 and 2: Viral reactivation in vivo after neurectomy. Science 184:1185–1187, 1974.PubMedCrossRefGoogle Scholar
  52. ZIEGLER, M. G., J. A. THOMAS, and D. M. JACOBOWITZ. Retrograde axonal transport of antibody to dopamine β-hydroxylase. Brain Res. 104:390–395, 1976.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • H. Thoenen
    • 1
  • M. Schwab
    • 1
  • Y.-A. Barde
    • 1
  1. 1.Department of PharmacologyBiocenter of the UniversityBaselSwitzerland

Personalised recommendations