Advertisement

Axonal Transport: The Mechanisms and Their Susceptibility to Derangement; Anterograde Transport

  • Fred Samson

Abstract

Among the nonimpulse-based mechanisms of the neuron, axoplasmic transport (or better termed neuroplasmic transport for it is not limited to axons) is one of the neuronal processes of potential significance to disease conditions. Further, axoplasmic transport is a special case of the general phenomena of intracellular movements — important to the normal functioning of all types of cells — and is not limited to neurons. Experimentation has shown that transport is vulnerable to derangement and such derangement may be the basis of certain neurological disorders.

Keywords

Amyotrophic Lateral Sclerosis Axonal Transport Vinca Alkaloid Retrograde Axonal Transport Trophic Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALBUQUERQUE, J. E., F. M. WARNICK, and O. SANSONE. The effects of vinblastine and colchicine on neural regulation of muscle. Ann. N. Y. Acad. Sci. 228:224–243, 1974.PubMedCrossRefGoogle Scholar
  2. ALLEN, R. D. Some new insights concerning cytoplasmic transport. Symp. Soc. Exptl. Biol. 8:15–26, 1974.Google Scholar
  3. ALLEN, R. D., and N. KAMIYA, editors. Primitive Motile Systems in Cell Biology. New York: Academic Press, 1964.Google Scholar
  4. BANKS, P., D. MAYOR, and P. MRAZ. Cytochalasin B and the intra-axonal movement of nonadrenaline storage vesicles. Brain Res. 49:417–421, 1973.PubMedCrossRefGoogle Scholar
  5. BARONDES, S. H., and F. E. SAMSON. Axoplasmic transport. Neurosci. Res. Prog. Bull. 5:307–419, 1967.Google Scholar
  6. BENSCH, K. G., and S. E. MALAWISTA. Microtubule crystals: A new biophysical phenomenon induced by vinca alkaloids. J. Cell Biol. 40:95–107, 1969.PubMedCrossRefGoogle Scholar
  7. BERL, S., S. PUSZKIN, and W. J. NICKLAS. Actomyosin-like protein in brain. Science 179:441–446, 1973.PubMedCrossRefGoogle Scholar
  8. BOEGMAN, R. J., P. L. WOOD, and L. PINAUD. Increased axoplasmic flow associated with pargyline under conditions which induce a myopathy. Nature 253:51–52, 1975.PubMedCrossRefGoogle Scholar
  9. BOESCH, J., P. MANKO, and M. CUéNOD. Effect of colchicine on axonal transport of proteins in the pigeon visual pathways. J. Neurobiol. 2:123–132, 1972.Google Scholar
  10. BRADLEY, W. G., and M. H. WILLIAMS. Axoplasmic flow in axonal neuropathies. Brain 96:235–246, 1973.PubMedCrossRefGoogle Scholar
  11. BRYAN, J. Biochemical properties of microtubules. Fed. Proc. 33:152–174, 1974.PubMedGoogle Scholar
  12. BUNT, A. H., and R. D. LUND. Vinblastine induced blockage of orthograde and retrograde axonal transport of protein in retinal ganglion cells. Exptl. Neurol. 45:288–297, 1974.CrossRefGoogle Scholar
  13. BURTON, P. R., and H. L. FERNANDEZ. Delineation by lanthanum staining of filamentous elements associated with the surfaces of axonal microtubules. J. Cell Sci. 12:567–583, 1973.PubMedGoogle Scholar
  14. BURTON, P. R., and R. E. HINKLEY. Further electron microscopic characterization of axoplasmic microtubules of the ventral nerve cord of the crayfish. J. Submicr. Cytol. 6:311–326, 1974.Google Scholar
  15. CHOU, S. M., and H. A. HARTMANN. Axonal lesions and waltzing syndrome after IDPN administration in rats. Acta Neuropathol. 4:590–603, 1965.PubMedCrossRefGoogle Scholar
  16. COOPER, P. O., and R. S. SMITH. The movement of optically detectable organelles in myelinated axons of Xenopus laevis. J. Physiol. 242:77–97, 1974.Google Scholar
  17. DAVISON, P., and B. WINSLOW. The protein subunit of calf brain neurofilament. J. Neurobiol. 5:119–133, 1974.PubMedCrossRefGoogle Scholar
  18. DROZ, B., and C. P. LEBLOND. Axonal migration of proteins in the central nervous system and peripheral nerves as shown by radioautography. J. Comp. Neurol. 121:325–345, 1963.PubMedCrossRefGoogle Scholar
  19. EDDS, K. Particle movements in artificial axopodia of Echinosphaerium nucleofilum. J. Cell Biol. 59:88a, 1973.Google Scholar
  20. EDELMAN, G. Receptor interactions and mitogenesis in lymphoid cells. In: Functional Linkage in Biomolecular Systems, edited by F. O. Schmitt. New York: Raven Press, 1975, pp. 188–201.Google Scholar
  21. ELAM, J. S., J. M. GOLDBERG, N. S. RADIN, and B. W. AGRANOFF. Rapid axonal transport of sulfated mucopolysaccharide proteins. Science 170:458–460, 1970.PubMedCrossRefGoogle Scholar
  22. FERNANDEZ, H. L., P. R. BURTON, and F. E. SAMSON. Axoplasmic transport in the crayfish nerve cord: The role of fibrillar constituents of neurons. J. Cell Biol. 51:176–192, 1971.PubMedCrossRefGoogle Scholar
  23. FERNANDEZ, H., and P. F. DAVISON. Axoplasmic transport in the crayfish nerve cord. Proc. Natl. Acad. Sci. USA 64:512–519, 1969.PubMedCrossRefGoogle Scholar
  24. FERNANDEZ, H. F., and B. RAMIREZ. Muscle fibrillation induced by blockage of axoplasmic transport. Brain Res. 49:385–395, 1974.CrossRefGoogle Scholar
  25. FINE, R. E., A. L. BLITZ, S. E. HITCHCOCK, and B. KAMINER. Tropomyosin in brain and growing neurones. Nature New Biol. 245:182–185, 1973.PubMedCrossRefGoogle Scholar
  26. FORMAN, D. S., A. L. PADJAN, and G. R. SIGGINS. Movements of organelles in frog axons studied by time-lapse cinematography and computer analysis. Soc. Neuvosci. Meeting, Abs. 210, 1974.Google Scholar
  27. GILLESPIE, E., R. J. LEVINE, and S. E. MALAWISTA. Histamine release from rat peritoneal mast cells: Inhibition by bolchicine and potentiation by deuterium oxide. J. Pharmacol. Exptl. Ther. 164:158–165, 1968.Google Scholar
  28. GRAFSTEIN, B. Axonal transport: Communication between soma and synapse. In: Advances in Biochemical Psychology. New York: Raven Press, 1969, pp. 11–25.Google Scholar
  29. GRIFFIN, J. W., and D. L. PRICE. Axonal transport to and from the motor nerve ending. In: Amyotrophic Lateral Sclerosis, edited by J. M. Anders, R. T. Johnson, and M.A.B. Brazier. New York: Academic Press, 1976, pp. 33–67.Google Scholar
  30. HENDRY, I. A., K. STOCKEL, H. THOENEN, and L. L. IVERSEN. The retrograde axonal transport of nerve growth factor. Brain Res. 68:103–121, 1974.PubMedCrossRefGoogle Scholar
  31. HESLOP, J. P. Transport at the cellular level. Symp. Soc. Exptl. Biol. 28:209–227, 1974.Google Scholar
  32. HINKLEY, R. E. Axonal microtubules and associated filaments stained by alcian blue. J. Cell Sci. 13:753–761, 1973.PubMedGoogle Scholar
  33. HOKFELT, T., and A. DAHLSTROM. Electron microscopic observations on the distribution and transport of nonadrenaline storage particles after local treatment with mitosis inhibitors. Acta Physiol. Scand. Suppl. 357:10–11, 1971.Google Scholar
  34. HOLMES, K. V., and P. W. U. Role of microtubules in movement and alignment of nuclei in virus-induced syncytia. J. Cell Biol. 39:526–543, 1968.PubMedCrossRefGoogle Scholar
  35. JAHN, T. L., and E. C. BOVEE. Protoplasmic movements within cells. Physiol. Rev. 49:493–862, 1969.Google Scholar
  36. JAMES, K.A.C., J. J. BRAY, I. G. U, and L. AUSTIN. Effect of colchicine on the transport of axonal protein in the chicken. Biochem. J. 117:767–771, 1970.PubMedGoogle Scholar
  37. JASINSKI, A., A. GORBMAN, and T. J. HARA. Rate of movement and redistribution of stainable neurosecretory granules in hypothalamic neurons. Science 154:776–778, 1966.PubMedCrossRefGoogle Scholar
  38. JOHNSON, G., R. S. SMITH, and G. S. LOCK. Accumulation of material at severed ends of myelinated nerve fibers. Am. J. Physiol. 217:188–191, 1969.PubMedGoogle Scholar
  39. KARLSSON, J. O., H. A. HANSSON, and J. SJöSTRAND. Studies on axonal transport of proteins in retinal ganglion cells of the rabbit. Z. Zellforsch. mikrosk. Anat. 115:265–283, 1971.PubMedCrossRefGoogle Scholar
  40. KARLSSON, J., and J. SJöSTRAND. Transport of labelled proteins in the optic nerve and tract of the rabbit. Brain Res. 11:431–439, 1968.PubMedCrossRefGoogle Scholar
  41. KEMPER, B., J. F. HABENER, A. RICH, and J. T. POTTS. Microtubules and the intracellular conversion of proparathyroid hormone to parathyroid hormone. Endocrinology 96:906–912, 1975.CrossRefGoogle Scholar
  42. KIRKPATRICK, J. B., J. J. BRAY, and S. M. PALMER. Visualization of axoplasmic flow in vitro by nomanski microscopy. Brain Res. 43:1–10, 1972.PubMedCrossRefGoogle Scholar
  43. KREUTZBERG, G. W. Neuronal dynamics and axonal flow. IV. Blockage of intra-axonal enzyme transport by colchicine. Proc. Natl. Acad. Sci. USA 62:722–728, 1969.PubMedCrossRefGoogle Scholar
  44. LABRIE, F., M. GAUTHIER, G. PELLETIER, P. BORGEAT, A. LEMAY, and J.-J. GOUGE. Role of microtubules in basal and stimulated release of growth hormone and prolactin in rat adenohypophysis in vitro. Endocrinology 93:903–914, 1973.PubMedCrossRefGoogle Scholar
  45. LACY, P. E., S. L. HOWELL, D. A. YOUNG, and C. J. FINK. New hypothesis of insulin secretion. Nature 219:1177–1179, 1968.PubMedCrossRefGoogle Scholar
  46. LASEK, R. J. Protein transport in neurons. Int. Rev. Neurobiol. 13:289–324, 1970.CrossRefGoogle Scholar
  47. LAVAIL, M. M., and J. H. LAVAIL. Retrograde axonal transport in the central nervous system. Brain Res. 85:273–280, 1975.PubMedCrossRefGoogle Scholar
  48. LEVY, D. A., and J. A. CARLTON. Influence of temperature on the inhibition by colchicine of allergic histamine release. Proc. Soc. Exptl. Biol. Med. 130:1333–1336, 1969.Google Scholar
  49. LUBINSKA, L. Axoplasmic streaming in regenerating and in normal nerve fibers. In: Mechanisms of Neural Regeneration (Progress in Brain Research), edited by M. Singer and J. P. Schade, Vol. 13. Amsterdam: Elsevier, 1964, pp. 1–66.Google Scholar
  50. MALAWISTA, S. E. Colchicine: A common mechanism for its antiinflammatory and anti-miotic effects. Arthritis Rheum. 11:191–197, 1968.PubMedCrossRefGoogle Scholar
  51. MALAWISTA, S. E. Colchicine-like effects of other antimitotic agents. J. Cell Biol. 49:848–855, 1971.PubMedCrossRefGoogle Scholar
  52. MCCLURE, W. O. The effect of drugs upon axoplasmic transport. Adv. Pharmacol. Chemother. 10:185–220, 1972.CrossRefGoogle Scholar
  53. MCINTOSH, J. R. An introduction to microtubules. J. Supramolec. Struct. 2:385–392, 1974.CrossRefGoogle Scholar
  54. OCHS, S. Local supply of energy to the fast axoplasmic transport mechanism. Proc. Natl. Acad. Sci. USA 65:1279–1282, 1971a.CrossRefGoogle Scholar
  55. OCHS, S. Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J. Neurochem. 18:107–114, 1971b.PubMedCrossRefGoogle Scholar
  56. OCHS, S. Fast axoplasmic transport in mammalian nerve in vitro after block of glycolysis with iodoacetic acid. J. Neurochem. 18:833–843, 1971c.PubMedCrossRefGoogle Scholar
  57. OCHS, S. Systems of material transport in nerve fibers. I.Axoplasmic transport related to nerve function and tropic control. Ann. N. Y. Acad. Sci. 228:202–223, 1974.PubMedCrossRefGoogle Scholar
  58. OLMSTEAD, J. B., and G. G. BORISY. Characterization of MT assembly in porcine brain extracts by viscometry entry. Annu. Rev. Biochem. 42:507–540, 1973.CrossRefGoogle Scholar
  59. OOSAWA, F. Polyelectrolytes. New York: Marcel Dekker, Inc., 1971.Google Scholar
  60. PALAY, S. L., and V. CHAM-PALAY. The structural heterogeneity of central nervous tissue. In: Metabolic Compartmentation in the Brain. New York: MacMillan, 1972, pp. 187–207.Google Scholar
  61. PLEASURE, D. E., K. C. MISHLER, and W. K. ENGEL. Axonal transport of proteins in experimental neuropathies. Science 166:524–525, 1969.PubMedCrossRefGoogle Scholar
  62. POISNER, A. M., and J. BERNSTEIN. A possible role of MTs in catecholamine release from the adrenal medulla. Effect of colchicine, vinca alkaloids and deuterium Oxide 2. J. Pharmacol. Exptl. Ther. 177:102–108, 1971.Google Scholar
  63. POLLARD, T. O., and P. R. WEIKING. Actin and myosin and cell movement. CRC Crit. Rev. Biochem. 2:1–65, 1974.PubMedCrossRefGoogle Scholar
  64. PORTER, K. R. Cytoplasmic microtubules and their functions. In: Principles of Biomolecular Organization, CIBA Foundation Symp. London: J. and A. Churchill, 1966, pp. 308–345.Google Scholar
  65. PRICE, D. L., and J. W. GRIFFIN. Neural transport of tetanus toxin. In: Amyotrophic Lateral Sclerosis, edited by J. M. Andrews, R. T. Johnson, and M.A.B. Brazier. New York: Academic Press, 1976, pp. 1–32.Google Scholar
  66. PRICE, M. T. The effects of colchicine and lumicholchicine on the rapid phase of axonal transport in the rabbit visual system. Brain Res. 77:497–501, 1974.PubMedCrossRefGoogle Scholar
  67. SAMSON, F. E. Mechanism of axoplasmic transport. J. Neurobiol. 2:347–360, 1971.PubMedCrossRefGoogle Scholar
  68. SAMSON, F. E. Pharmacology of drugs that affect intracellular movement. Annu. Rev. Pharmacol. Tox. 16:143–159, 1976.CrossRefGoogle Scholar
  69. SCHMITT, F. O., and F. E. SAMSON. Neuronal fibrous protein. Neurosci. Res. Prog. Bull., 1968.Google Scholar
  70. SHELANSKI, M. L., and E. W. TAYLOR. Isolation of a protein subunit from microtubules. J. Cell Biol. 34:549–554, 1967.PubMedCrossRefGoogle Scholar
  71. SMITH, D. S., U. JARLFORS, and R. BERANEK. The organization of synaptic axoplasm in the lamprex (Petromyzon marinus) central nervous system. J. Cell Biol. 46:199–219, 1970.PubMedCrossRefGoogle Scholar
  72. SOIFER, D., Chairman, Conference on Biology of Cytoplasmic Microtubules. Ann. N. Y. Acad. Sci., Vol. 253, 1975.Google Scholar
  73. SYMPOSIA OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY. Transport at the cellular level, No. 28. Cambridge: University Press, 1974.Google Scholar
  74. TANI, E., and T. AMETANI. Substructure of microtubules in brain nerve cells as revealed by ruthenium red. J. Cell Biol. 46: 159–165, 1970.PubMedCrossRefGoogle Scholar
  75. TAYLOR, E. W. The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J. Cell Biol. 25:145–160, 1965.PubMedCrossRefGoogle Scholar
  76. TEMPLE, R., and J. WOLFF. Stimulation of steroid secretion by antimicrotubular agents. J. Biol. Chem. 248:2691–2698, 1973.PubMedGoogle Scholar
  77. THOA, N. G., G. F. WOOTEN, J. AXELROD, and I. J. KOPIN. Inhibition of release of dopamine ß-hydroxylase and norepinephrine from sympathetic nerves by colchicine, vinblastine or cytochalasin-β. Proc. Natl. Acad. Sci. USA 69:520–522, 1972.PubMedCrossRefGoogle Scholar
  78. TRIFARO, J. M., B. COLLIER, A. LASTOWEKA, and D. STERN. Inhibition by colchicine and by vinblastine of acetylcholine-induced catecholamine release from the adrenal gland: An anticholinergic action, not an effect upon microtubules. Molec. Pharmacol. 8:264–267, 1972.Google Scholar
  79. WEISENBERG, R. C., G. G. BORISY, and E. W. TAYLOR. The colchicine-binding protein of mammalian brain and its relation to microtubules. Biochemistry 7:4466–4479, 1968.PubMedCrossRefGoogle Scholar
  80. WEISS, P. Neuronal dynamics. Neurosci. Res. Prog. Bull. 5:371–400, 1967.Google Scholar
  81. WEISS, P., and H. B. HISCOE. Experiments on the mechanism of nerve growth. J. Exptl. Zool. 107:315–395, 1948.CrossRefGoogle Scholar
  82. WILLIAMS, J. A., and J. WOLFF. Colchicine-binding proteins and the secretion of thyroid hormone. J. Cell Biol. 54:157–165, 1972.PubMedCrossRefGoogle Scholar
  83. WILSON, L., J. R. BAMBURG, S. B. MIZEL, L. M. GRISHAM, and K. M. CRESWELL. Interaction of drugs with microtubular proteins. Fed. Proc. 33:158–166, 1974.PubMedGoogle Scholar
  84. WILSON, L., J. BRYAN, A. RUBY, and D. MAZIA. Precipitation of proteins by vinblastine and calcium ions. Proc. Natl. Acad. Sci. USA 66:807–814, 1970.PubMedCrossRefGoogle Scholar
  85. YIN, H., T. UKENA, and R. BERLIN. Effect of colchicine, colcemid, and vinblastine on the agglutination, by concanavalin A, of transformed cells. Science 178:867–868, 1972.PubMedCrossRefGoogle Scholar
  86. ZWEIG, M. H., and C. F. CHIGNELL. Interaction of some colchicines analogs, vinblastine and podophyllotoxin with rat brain micro-tubular protein. J. Biochem. Pharmacol. 22:2141–2150, 1973.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Fred Samson
    • 1
  1. 1.Ralph L. Smith Research CenterUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations